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Do I contradict myself?
Very well then I contradict myself,
(I am large—I contain multitudes.)
—Walt Whitman, Song of Myself (1855)

Abstract

This chapter examines the contributions that evolutionary theory can make to an in-
tegrated science of decision making. It begins with a discussion of classical decision 
theory and analyzes the conceptual and empirical failures of this approach. Mechanistic 
explanations, which do not explicitly invoke evolutionary arguments, are presented to 
account for these failures. Thereafter, evolutionary approaches to decision making are 
examined and the failures revisited in light of evolutionary theory. It is shown that in 
some cases “ irrational” behavior might be adaptive. The chapter concludes by explor-
ing the open questions, levels of analysis, and policy implications that an evolutionary 
approach can bring to decision making.

The Bicycle

Imagine a group of aliens were to come to Earth, commissioned by their su-
periors with producing an intelligible account (or explanation) of a class of 
objects that Earthlings classify as “bicycles.” The aliens could pick a set of 
such items and measure their thermodynamic properties, their conductivity, 
and other physical features, but unless they consider the purpose for which 
the bicycle was designed, the analysis will almost certainly fail to capture 
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the essential elements needed to produce a coherent explanation of why such 
things as foldable metal bicycles, rigid plastic bicycles, racing bicycles, and 
mountain bicycles are all called by the same name.

As this example illustrates, considering the process by which the object 
of study came about and the criteria for its design (the “purpose” of the ob-
ject) greatly aids the discovery of answers to certain questions. In any sci-
ence that uses biological organisms as objects of study, evolution by natural 
selection is that process. Decision making is a functional property of organ-
isms. Comprehensive accounts of decision processes in organisms as varied as 
amoebas and humans are thus aided by consideration of evolution by natural 
selection.

There is an important caveat to this argument for an integration of evolu-
tionary theorizing in the study of decision making and behavior. Returning 
to our alien narrative, imagine that the aliens’ mission was not to understand 
“bicycles” but “conductivity.” They may well choose to study bicycles because 
bicycles tend to contain metal bits, rubber bits, and plastic bits, which might 
make it a great system for exploring how conductivity operates across multiple 
materials. They might even succeed in producing a coherent theory of conduc-
tivity across materials, and for them the fact that bicycles have a purpose is 
now irrelevant to the success of their research program. They are not interested 
in the bicycleness of their objects of study.

Within the study of decision making there are topics that are analogous 
to each of these different kinds of alien missions. A researcher who designs 
fi nancial products may notice that private investors systematically prefer prod-
ucts that have lesser variance in outcome, and this suggests to her that she can 
make money by selling products that take advantage of this tendency. For her, 
the goal is to understand behavior with respect to money, and there are many 
ways to go about this, not necessarily involving asking why, in an evolutionary 
sense, investors behave as they do. Forays into  prospect theory (Kahneman 
and Tversky 1979) have made advances in identifying regularities by which 
humans make decisions (e.g., reference points and diminishing returns for both 
gains and losses) without appealing to evolutionary principles.

Progress in decision science is possible without reference to evolution, but 
given that many of the questions that decision scientists study involve biologi-
cal agents (including, of course, human beings), it is greatly aided by it. There 
are two major advantages of taking evolution into account. First, evolved func-
tionality is a suitable source of candidate hypotheses for decision mechanisms. 
Evolved functions, which biologists term adaptations, are a tiny and special 
subset of all conceivable functions. Adaptations evolved by natural selection, 
which means that they must have increased the reproduction of the organism 
(i.e., increased biological  fi tness). Bicycles, although a highly functional form 
of human-powered transportation, are not adaptations.

For a more pertinent example, it is clear that evolution will not produce 
decision mechanisms that lead to maximization of lifetime accumulation of 
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resources per se. Natural selection favors the accumulation of resources only 
insofar as resources contribute to fi tness. If a given resource (say money) has a 
nonlinear relation to  fi tness, then there is no reason to expect that decision pro-
cesses will lead to maximization of lifetime wealth accumulation (McNamara 
and Houston 1992). This may contradict intuitive expectations of people raised 
in capitalist societies, but is immediately apparent when we take evolution 
seriously.

A second important advantage is that since evolution acts on the  norm of 
reaction of organisms as a whole and within specifi c social and environmental 
scenarios, the integration of decision studies across sciences such as anthropol-
ogy, economics, psychology, ecology, and neurophysiology is a natural contri-
bution of evolutionary theorizing.

In this chapter, we examine the contributions that evolutionary theory can 
make to an integrated science of decision making. We begin with a brief intro-
duction to classical decision theory, followed by a discussion of its conceptual 
and empirical failures. We then examine some mechanistic explanations for 
these failures that do not explicitly invoke evolutionary arguments. Thereafter, 
evolutionary approaches to decision making are introduced. We revisit the fail-
ures of axiomatic decision theory in light of evolutionary theory, revealing 
that in some cases “irrational” behavior might be adaptive. In conclusion, we 
explore open questions, levels of analysis, and policy implications of an evolu-
tionary approach to decision making.

Axiomatic Decision Theory

Decision theory aims  to understand how agents—usually humans and non-
human animals, but also microorganisms, plants, and artifi cial life—pursue 
goals in the face of options. Examples of  goals include maximizing happi-
ness, wealth, or calorie intake, and examples of corresponding options include 
choosing among different careers, investment opportunities, or berry bushes.

The foundations of decision theory were laid in the 17th century in a series 
of letters between Blaise Pascal and Pierre Fermat, who discussed the problem 
of dividing stakes between two gamblers whose game is interrupted before its 
close. To illustrate the problem and its solution, imagine a game with two play-
ers, Peter and Paul, who have staked equal money on being the first to win 3 
points by tossing a fair coin. Peter wins a point if the coin lands heads, and Paul 
a point if it lands tails. How should the stakes be divided if the game is stopped 
when Peter has two points and Paul one?

Because the coin is fair, the players have an equal chance to win the next 
point. If Peter won the next point, he would win the entire stakes, so he is en-
titled to at least half the stakes. If Paul won, the players are tied, so each would 
have an equal chance to win the entire stakes on the next toss; in that case, 
each is entitled to half the stakes, meaning Peter is entitled to 3/4 of the stakes 
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overall. In other words, the value of the unfi nished game to each player is the 
sum over the values of each possible outcome (i.e., the stakes), each multiplied 
by the chances that it will occur. A key generalization that emerged from this 
discussion is that agents should maximize expected value (EV):

EV p xi i= ∑ , (7.1) 

where pi and xi are the probability and amount of money, respectively, associ-
ated with each possible outcome (i = 1,...,n) of that option.

A Concave Utility Function

However elegant, the prescription to maximize expected value raises the so-
called St. Petersburg paradox, famously posed by the mathematician Nicolas 
Bernoulli. Consider the following game of chance: to play, the player pays a 
fi xed fee up front, x, and then repeatedly tosses a fair coin until the fi rst head 
appears, receiving 2nx if a head comes up on the nth toss. The expected value 
of the game is therefore:

EV x x x x

x x x x

= ⋅ + ⋅ + ⋅ + ⋅ +

= + + + +
= ∞

1
2
2 1

4
4 1

8
8 1

16
16 …

…

.

(7.2) 

Hence, players should be willing to pay any amount to play, yet common sense 
suggests that most people would only pay a few dollars to play. The most 
infl uential solution to this paradox was offered by Nicolas’ cousin, Daniel 
Bernoulli, who argued that the value of an outcome should not be judged on 
monetary value, but instead on a concave function of this value, termed  utility, 
which refl ects the diminishing marginal utility of money (see Figure 7.1). In 
Bernoulli’s (1738/1954) words:

[T]he determination of the value of an item must not be based on its price, but 
rather on the utility it yields. The price of the item is dependent only on the thing 
itself and is equal for everyone; the utility, however, is dependent on the particu-
lar circumstances of the person making the estimate. Thus there is no doubt that 
a gain of one thousand ducats is more signifi cant to a pauper than to a rich man 
though both gain the same amount.

The diminishing marginal utility of money reduces the values of the later terms 
of Equation 7.2 so that expected utility converges to a fi nite number, resolving 
the St. Petersburg paradox. It is also important to point out that individuals 
with concave utility functions are risk averse. (There have been many attempts 
to resolve the St. Petersburg paradox; for a review, see Martin 2008.)
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The von Neumann and Morgenstern Axioms

The ideas of Pascal, Fermat, and Bernoulli were axiomatized by von Neumann 
and Morgenstern (1947) as follows. Agents face mutually exclusive outcomes 
Ai. A lottery L is:

L p Ai i= ∑ , (7.3) 

where pi represents probabilities that sum to 1. Agents choose lotteries (not 
outcomes!). A preference for lottery L over lottery M is denoted L � M. There 
are four axioms:

1. Completeness: for any two lotteries (L, M) exactly one of the following 
holds: L � M, L ≺ M, or L = M. In other words, when comparing two 
lotteries, agents are never undecided about their preference (although 
they might be indifferent).

2.  Transitivity: If L � M and M � N then L � N.
3. Continuity: If L � M � N then there exists a probability p ∈ [0,1] such 

that pL + (1 − p)N = M.
4. Independence: If L � M, then for any N and p ∈ (0,1], 

pL + (1 − p)N � pM + (1 − p)N. In other words, the preference for M 
over L is unaffected by the inclusion of N.

In the classical view, widely adopted in economics, agents whose decisions 
conform to these axioms are, by defi nition, rational.

States and Strategies

Agents’ decisions will usually depend on the state of the agent (Mangel and 
Clark 1986; McNamara and Houston 1986). State, in this context, might include 
psychological variables representing information that the agent has about the 
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Figure 7.1  A typical  utility function.
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world (including information about past outcomes); physiological variables 
such as energy reserves; and morphological variables such as body size.

A strategy is a rule that specifi es the action that should be performed in each 
state. It is also possible that, for a particular state, one of several behavioral 
options is chosen randomly. The sequence of behavior generated by a strategy 
might also be stochastic because the organism’s state might not be exactly 
determined by behavior. For example, the strategy in a particular state of en-
ergy might be to forage, but the consequences of foraging, and hence the next 
energetic state, are stochastic.

This defi nition of strategy does not specify the process that generates strat-
egies, nor does it even contain the idea of maximizing utility or  fi tness, or 
otherwise “doing well.” What a strategy is good for depends on the process 
that generated it. In axiomatic decision theory, agent strategies are generated 
by “rational thought” with the aim of maximizing  subjective utility. The math-
ematical analysis of such strategies is termed game theory (von Neumann and 
Morgenstern 1947).

Mapping Needs to Utility

The Need for a Common Currency

Agents typically have numerous, constantly recurring needs, such as food, 
water, and safety. Under the axioms of decision theory, there exists a  utility 
function mapping preferences for lotteries to the real numbers. The need for 
such a common currency arises because decisions must be made whose conse-
quences cannot compensate for the lack of other consequences. For example, 
no amount of nutrient ingestion will remedy a water shortage nor pass on genes 
to the next generation; no amount of water ingestion will compensate for a 
nutrient shortage (starvation) nor pass on genes to the next generation; and no 
amount of copulation will restore either a water deficit or an energy defi cit.

Most models of decision making assume that the decision is based on 
whether a decision variable of some kind exceeds one threshold or another. 
The decision variable represents the strength of the evidence or the strength 
of the need. When evidence is commensurable (i.e., when evidence of one 
kind can be weighed against evidence of another kind), then combining the 
evidence into a single decision variable is not problematic. However, evidence 
of a need for nutrients cannot be weighed against the evidence of a need for 
water. In animals, including humans, there are many neurons and neural sys-
tems involved in decision making, and these neural systems engage in different 
tasks and may come to different conclusions (Kalenscher et al. 2010). Animals 
nonetheless must, and do, decide between going to the river and going to the 
orchard.

One way in which such agents could do so is by mapping all needs into a com-
mon currency, usually referred to as subjective value or utility. Transforming 
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the different options into utility allows them to be represented on a common 
scale and rank-ordered according to value/utility. The greater the difference be-
tween the values of the available options, the higher the propensity of an agent 
to choose the option with the highest value. If the analysis of the options each 
reproducibly (i.e., without noise) generated an output independent of the other 
options in the common currency (± some amount of  subjective utility), then 
simply summing the outputs will yield a real-valued decision variable that is 
guaranteed to satisfy basic considerations like  transitivity because the ordering 
of the real numbers is transitive.

Despite the theoretical advantages of a common currency, it is far from clear 
whether this is physically implemented in most animals (cf. Shizgal 1997) or 
other decision-making organisms.1

Old and New Approaches to Mapping Needs to Utility in Economics

In economics, there have been several approaches to mapping agents’ needs to 
utility, which we broadly characterize as “old” and “new.” “Old” involved the 
Jeremy Bentham-ite idea that each possible outcome has a hedonic (pain/plea-
sure) value which has a magnitude and can be weighted by its probability, and 
with the decision rule being to choose whichever is most positive (pleasure) 
or least negative (pain) (Bentham 1789). The Benthamite individual thus has 
some kind of “hedonometer” to convert outcomes into this common currency 
for comparison.

Because of tremendous diffi culties in fi tting value functions to the great va-
riety of choices expressed by different actors, Paul Samuelson (1938) proposed 
to refrain from making any assumptions about the content of utility functions 
(i.e., what people actually value and to what degree) but to infer individual 
preferences, whatever they are, from observed choices. Within this “revealed-
 preferences” approach (which we term “new”), people behave as if they maxi-
mized a utility function, whatever this is, as long as they meet certain consis-
tency requirements, including transitivity, independence, and completeness. In 
short, the idea was to forget about how the individual did the processing and 
weighing up of options but focus instead on how a rational individual’s actual 
behavior could be represented by substituting “utility” indices for outcomes 
and weighting these by (subjective) probabilities such that if A is observed to 
be chosen over B the indices and weights would give a higher expected utility 
for A than for B.

1 It is even conceivable that “decision making” by plants employs a common currency. There 
has been a recent explosion of research on “ computation” and “intelligence” in plants. Like 
animals, plants have sophisticated hormonal signaling networks, such as the ethylene, jas-
monic acid, and salicylic acid pathways, which regulate growth and development and mediate 
responses to environmental stressors. These and many other signals must be integrated by the 
plant to reach “decisions” (Gilroy and Trewavas 2001; Trewavas 2005). It is not out of the 
question that, e.g., some signal molecule acts as a common currency in plants.
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It is impossible, at least within the “new” framework of revealed prefer-
ences, to make any statements about utility in someone who does not adhere to 
these consistency requirements. Hence, in economics, consistency of choice, 
as indicated by transitivity, completeness, etc., is the gold standard against 
which the quality of a decision can be evaluated; it is the hallmark of economic 
rationality.

Irrationality and  Exploitation

The worry about decision-making mechanisms that violate basic principles of 
rationality, such as transitivity, is that they expose the decision maker to po-
tentially catastrophic exploitation. To illustrate, suppose agent X had intransi-
tive preferences A > B > C > A, and agent Y possessed A. Agent Y could then 
sell A to agent X for B + ε, then sell B to agent X for C + ε and then sell C to 
agent X for A + ε (where ε is some small amount). Agent X has now given 3ε 
to agent Y and received nothing in return, a form of exploitation known as a 
“Dutch book.”

Failures of the Axiomatic Approach

Despite the mathematical elegance of  axiomatic decision theory, and despite 
the vulnerability to exploitation of agents that violate these axioms, the axiom-
atic approach fails on both conceptual and empirical grounds. These failures, 
described next, threaten those behavioral sciences that have grounded their 
disciplines in axiomatic decision theory, with economics being the prime ex-
ample. Our principal goal in this chapter is to assess the extent to which evo-
lutionary theory can provide an accurate, formal theory of human (and nonhu-
man) behavior to replace axiomatic decision theory, a task taken up below (see 
section on The Evolutionary Theory of Decision Making).

Conceptual Failures

Axiomatic decision theory makes several problematic assumptions about deci-
sion-making agents (at least if those agents are taken to be humans or nonhu-
man organisms) and has important gaps. First, although agents are assumed to 
have complete, transitive preferences, the theory does not explain why agents 
have the preferences they do, or even why they have any preferences at all. 
Second, agents are assumed to be able to maximize their utility functions rap-
idly under all conditions. The theory thus ignores practical limits on time, in-
formation, and computational power.

Axiomatic decision theory also ignores the fact that decisions are typically 
made in a highly structured environment, and this structure can be exploited by 
agents to simplify the problems they face, thus allowing them to make “good” 
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decisions with minimal computation. Numerous experiments reveal decision-
making biases that are often interpreted as errors. People are more likely to 
judge a statement as true if they have heard the statement before, for instance, 
regardless of the actual truth of the statement, a phenomenon referred to as the 
 truth effect or  reiteration effect (for a review, see Dechêne et al. 2010). Yet it 
is possible that such biases instead improve decisions by exploiting environ-
mental structure.

Schooler and Hertwig (2005) and Reber and Unkelbach (2010) argue that 
the truth effect is mediated by cognitive fl uency, such as retrieval fl uency (the 
ease with which an object is remembered): repeated exposure to a statement 
increases the ease with which that statement is processed and this, in turn, 
increases the perception that the statement is true. The latter increase occurs, 
according to these authors, because statements which are true are more likely 
to be encountered than those that are false. Hence, cognitive fl uency as a cue 
of truth is epistemically justifi ed (for a review of the effects of fl uency on deci-
sion making, see Oppenheimer 2008; for an argument that, for gossip state-
ments, reiteration reduces error, thus increasing believability, see Hess and 
Hagen 2006).

Simon (1956, 1990) dubbed this alternative view of decision making  bound-
ed rationality and made an analogy with a pair of scissors: one blade represents 
the cognitive limitations of the decision maker and the other the structure of 
the environment. Understanding decision making requires understanding both 
blades (for further examples and a discussion of the relationship between deci-
sion making and environmental structure, see Gigerenzer et al. 1999).

Empirical Failures

Perhaps not surprisingly, there is abundant evidence that humans (Tversky 1969; 
Loomes et al. 1991; Grace 1993; Tversky and Simonson 1993; Kalenscher and 
Pennartz 2010; Kalenscher et al. 2010) and nonhuman animals (Navarick and 
Fantino 1972, 1974, 1975; Shafi r 1994; Waite 2001; Shafi r et al. 2002; Bateson 
et al. 2003) systematically and predictably violate transitivity and other assump-
tions of axiomatic decision theory. (Rieskamp et al. 2006 reviews much of this 
evidence and the extent to which it might be consistent with relaxed consistency 
assumptions.)

Moreover, the same neural systems that have been implicated in represent-
ing economic utility, identifi ed by assuming consistency of choice (a man-
ifestation of the utility function: “as-if becomes as-is”), are also implicated 
in representing local intransitive value in people making intransitive choices 
(Kalenscher et al. 2010). This suggests that the neural systems containing val-
ue signals do not necessitate transitivity to represent the attractiveness of one 
commodity over another; they thus do not work according to the requirements 
of a  utility function.
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To provide a detailed example of the empirical failure of axiomatic deci-
sion theory, we discuss intertemporal choice. We then describe mechanistic 
and state-dependent explanations of apparent rationality violations, followed 
by an introduction to evolutionary decision making theory and a reanalysis of 
these violations in light of it.

Intertemporal Choice

Starting  with Paul Samuelson, economists in the 20th century came up with a 
prescriptive theory on how choices should be made between future outcomes 
(Samuelson 1937; Koopmans 1960; Lancaster 1963; Fishburn and Rubinstein 
1982). This framework, discounted utility theory, posited that a decision mak-
er behaves as if she maximized discounted utility (DU), with DU being the 
sum of the discount-factor-weighted utilities of all possible fi nal states. DU 
assumed that the discount function, by which the (undiscounted) utilities of the 
outcomes are multiplied, decreases exponentially with time (Samuelson 1937):

f t e rt( ) = − , (7.4) 

where r is the discount rate. One of the important implications of exponential 
discounting is that the rate by which future rewards are devalued will be con-
stant over time:

f t t
f t

e
e

e
r t t

rt
r t+( )

( )
= =

− +( )

−
−Δ Δ

Δ . (7.5) 

In other words, if a glass of beer is valued half as much tomorrow as it is today, 
then, under exponential discounting, it is valued half as much a year and a day 
from now as it is a year from now.

Constant discounting has important implications for economic rationality 
and time-consistency of preference. According to DU, it is not irrational or 
nonoptimal per se to prefer small, short-term over large, long-term rewards, 
even if the preference for immediacy results in an overall reduced net gain over 
time. However, DU requires consistency over time. That is, if an individual 
prefers a small, short-term reward over a large, long-term reward and both re-
wards are shifted in time by an identical time interval, then the preference for 
the small, short-term reward should be preserved because both rewards should 
be discounted by the same rate. For example, it could be perfectly rational for a 
rock star to live fast and die young if he really accepts this consequence of the 
early deathbed. In contrast, DU would label behavior as time-inconsistent if a 
decision maker fails to act in accordance with his long-term interest. For in-
stance, the failure to make appropriate retirement provisions would be irratio-
nal if the agent actually wishes to have a good and healthy lifestyle at old age.

Time-constant discounting, or more precisely, the  stationarity axiom in DU 
(Koopmans 1960), predicts that the ranking of preferences between several 
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future outcomes should be preserved when the choice outcomes are deferred 
into the future by a fi xed interval because the two outcomes should be dis-
counted by the same fraction. A wealth of empirical studies suggests that all 
species tested, including humans,  monkeys, pigeons,  rats,  mice, leeches and 
dragonfl ies, violate the principle of constant discounting and other implica-
tions of DU.

In a paradigmatic test of this prediction, human or nonhuman subjects fi rst 
choose between a smaller, sooner reward (SS) or larger, later reward (LL), 
such as receiving $1 today or $2 tomorrow. A common delay is then added 
to both options, such as receiving $1 in seven days or $2 in eight days. An 
exceptionally reliable fi nding across humans and nonhuman animals (Chung 
and Herrnstein 1967; Rachlin and Green 1972; Ainslie 1974, 1975; Green et al. 
1981; Thaler and Shefrin 1981; Logue 1988; Benzion et al. 1989; Loewenstein 
1992; Green et al. 1994; Kirby and Herrnstein 1995; Green et al. 1997; Bennett 
2002; Frederick et al. 2002; McClure et al. 2004; Rohde 2005; McClure et al. 
2007) is that the tendency to choose SS declines dramatically with the increas-
ing length of the added delay: although many people choose $1 today over $2 
tomorrow, these same individuals pick $2 in eight days over $1 in seven days. 
This suggests that the prolongation of the delays resulted in a preference rever-
sal even though the difference in delays remained identical (immediacy effect; 
Thaler and Shefrin 1981; Benzion et al. 1989).

If these experimental results are taken at face value, human and nonhu-
man agents appear to add extra value to immediate outcomes, a behavior best 
approximated by nonconstant discount functions, such as hyperbolic (Mazur 
1984, 1988) or quasi-hyperbolic (Laibson 1997) functions. A hyperbolic dis-
count function is of the form:

f t
rt

( ) =
+
1

1
, (7.6) 

where r is the discount rate. In contrast to exponential discounting, under hy-
perbolic discounting the rate by which future rewards are devalued is not con-
stant over time. To illustrate this, consider that when t = 0 (i.e., the present):

f t t
f t

r t t
rt r t

+( )
( )

=
+ +( )( )

+( )
=

+
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Δ

1 1
1 1

1
1

/
/

. (7.7) 

On the other hand, when t >>Δt (e.g., the distant future):

f t t
f t
+( )
( )

Δ
∼1. (7.8) 

Under hyperbolic discounting, despite the fact that a glass of beer is valued 
half as much tomorrow as it is today, its value a year and day from now is (al-
most) equal to its value a year from now.
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As noted earlier, because agents who use nonconstant discount functions 
and exhibit other violations of rationality assumptions are vulnerable to ex-
ploitation, and because such violations challenge axiomatic decision theory, 
considerable effort has been made to explain these violations.

One possibility, of course, is that some such violations are artifacts of the 
experimental procedures. For instance, experimental procedures might inad-
vertently induce changes in state, at least in nonhuman animals, producing 
apparent violations of  transitivity. This could happen if training procedures 
meant to teach the animal about choices also altered feeding rates, and hence 
the animal’s energetic state. Choices, which seem to reveal intransitive prefer-
ences, result instead from choices made in different states, which do not violate 
transitivity, and has been demonstrated in a study of  starlings (Schuck-Paim 
et al. 2004).

Despite the possibility that some violations are actually experimental ar-
tifacts, the empirical evidence against axiomatic decision theory is strong 
enough to compel us to seek an alternative. We turn now to explanations of ir-
rational decision making that do not explicitly invoke evolutionary arguments, 
such as those involving the mechanisms of decision making, followed by an 
explicitly evolutionary approach to decision making which, in some instances, 
identifi es an adaptive logic underlying seemingly irrational decisions.

Mechanisms of Decision Making

Some of the observed failures of axiomatic decision theory could be the result 
of the  cognitive architecture of  decision making.

Voting Can Produce Intransitivity

One suggestion is that intransitivities are the consequence of a system where 
multiple independent decision mechanisms in the brain “ vote” for a choice, 
and the winning choice becomes the agent’s decision.  Condorcet’s voting para-
dox tells us that when decisions are made by aggregating over votes (rather 
than, e.g., summing real-valued outputs), and where there are three or more 
voters (in this case, decision-making mechanisms), the revealed preferences 
of the system as a whole may very well be intransitive, even though every 
voter has a transitive ordering of the options. When choosing among two of 
the three decision options by voting, the  preferences (see Table 7.1) will yield 
A > B > C > A.

Kenneth Arrow (1950) generalized Condorcet’s paradox in his impossibil-
ity theorem, which proved that no voting system can be designed that satisfi es 
three  fairness criteria:
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1. If every voter prefers alternative X over alternative Y, then the  group 
prefers X over Y.

2. If every voter’s preference between X and Y remains unchanged, then 
the group’s preference between X and Y will also remain unchanged 
(even if voters’ preferences between other pairs like X and Z, Y and Z, 
or Z and W change).

3. No single voter possesses the power to always determine the group’s 
preference.

Hence, some behavioral tendencies might simply be by-products of the neural 
architecture (for a discussion, see Schneider et al. 2007). 

Representation

Constraints on  representation may be another central way in which cognitive 
architecture shapes decision making, including exhibiting intransitive prefer-
ences and other irrational behaviors. The concept of representation encompass-
es different phenomena according to different authors, so it is worth prefacing 
any discussion or example of its role in decision making with a minimum at-
tempt at semantic precision.

By  representation, we mean a system of symbols that is homomorphic2 to 
another system. A representation has three essential properties (Gallistel 2001):

1. Reference: the symbols in the representing system must be causally 
connected to that to which they refer.

2. Homomorphism: operations on the symbols in the representing system 
must be homomorphic to processes and relations that obtain between 
their referents.

3. Functionality: the operations on the symbols in the representing system 
must at least occasionally direct behavior in ways consistent with the 
state of that aspect of the represented system to which the symbols refer.

Neurons involved in yaw correction in the housefl y provide an example of 
all three properties (yaw is rotation around an axis perpendicular to the fl y’s 
wings). First, large-fi eld image motion (which under natural circumstances is a 

2 A homomorphism is a “structure-preserving” transformation.

Table 7.1  Preferences illustrating  Condorcet’s paradox, where A, B, and C are deci-
sion options; I, II, and III are decision-making agents; and 1st, 2nd, and 3rd represent 
the ordinal  preferences of each agent.

I II III
A 1st 3rd 2nd
B 2nd 1st 3rd
C 3rd 2nd 1st
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measure of yaw) alters spike trains in two axons in the visual system of the fl y,
establishing causality. Second, a linear operation on the spike train data recov-
ers an accurate representation of the yaw waveform, establishing homomor-
phism (Rieke et al. 1997). Third, there is good evidence that the spike trains in 
these neurons drive the yaw correcting responses of the fl ying fl y, establishing 
behavioral function.

Whether “thoughts” (higher-level cognitive processes), in general, are best 
understood as computations over representations, or as emergent phenomena 
of the simultaneous operation of large numbers of simple, interconnected pro-
cessing units (neurons, presumably, or groups of neurons) is, of course, a clas-
sic debate in the fi elds of cognitive science and the philosophy of mind. If the 
symbolic view of cognition is correct, then it has important implications for 
decision making in humans. Insofar as  information-processing systems in non-
human organisms, including microorganisms and plants, are also symbolic, the 
implications we describe next apply to them as well; in fact, some of the most 
compelling examples come from insects.

A decision is made between alternatives: between alternative possible states 
of the world or between alternative actions. The representation then specifi es 
the set of alternatives. Thus, it constrains the decision. No decision can be 
taken on an alternative not specifi ed in the representation. Consider, fi rst, deci-
sions as to which, among a range of possible states of the world, is in fact the 
currently prevailing state, a problem often solved with Bayesian analysis. A 
Bayesian decision maker has a representation of the possible states of some 
aspect of the world, which precedes and constrains the outcome of the decision 
process. Consider, second, decisions as to which action to take. Again, the ani-
mal cannot choose an action that it cannot represent. In  reinforcement learning, 
the values that are computed attach to the symbols that represent the possible 
actions. No decision can be taken on an action that has not been symbolically 
represented.

This is a very general defi nition of the concept of representation as it ap-
plies to choices, one that encompasses a broad range of views regarding the 
veridicality of representations. At the “minimalist” extreme, a representation 
is simply a member of a set over which a nonzero probability distribution has 
been defi ned. The set and its members need not have much, if any, structure. 
The primary requirement is that, in the environments in which an agent typi-
cally fi nds itself, the set of representations helps generate functional behavior.

At the same time, this defi nition of representation can also accommodate 
highly structured representations of the world. If an agent solves a problem like 
fi nding its way in space, then it must somehow represent space, in the sense 
that it must compute solutions using “quantities” that represent attributes of 
the way-fi nding problem. For an agent that navigates along a chemical gradi-
ent, the representation of space could be as simple as “higher concentration” 
and “lower concentration.” At the other extreme, an agent that must achieve 
pinpoint accuracy in order to  navigate long distances, such as a migrating bird, 
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might have a representation of space whose structure closely approximates the 
structure of Euclidean space (i.e., R3 with the standard metric). Much ink has 
been spilled on the question of whether nonhuman animals possess such a “cog-
nitive map,” and although there are many threads to this story—from “short-
cut style experiments” to the analysis of so-called place cells in the mammalian 
hippocampus—there does not seem to be have been a satisfying resolution of 
this question (see, e.g., Collett and Graham 2004; Cruse and Wehner 2011; 
Dyer 1991; Gallistel and Cramer 1996; Gould 1986; McNaughton et al. 2006; 
Menzel et al. 2005; Tolman 1948).

State-Dependent Valuation Learning

The foregoing theoretical arguments  make it clear that agents’ representations 
could shape their decision making, but they do not address the issue of which 
aspects of experience are fi rst encoded and then recalled to drive choices. 
Given a certain experience (say an action followed some time later by ac-
cess to a food item), the subject can encode perceptual information about the 
food item or the time that has lapsed between action and outcome, as well as 
 encoding internally generated  information such as changes in energetic state 
consequent on ingestion. It is possible to explore these issues experimentally.

Consider a subject that experiences two stimuli: red and blue. Responding 
to red leads to outcome A whereas responding to blue leads to outcome B. In 
one experiment, these stimuli are randomly assigned to two internal states, 
so that, for example, red is experienced when the individual is hungry (H) 
and blue when it is not hungry (N). We start with a case where the sizes of 
A and B are equal. Once the subject is acquainted with each stimulus and its 
consequences, choices between them are introduced in both states (H and N) 
and preference is measured. The questions involved are: Which is preferred 
(if any), and what kind of representation may explain such preference? The 
problem is described in Figure 7.2 (Aw et al. 2011).

Focusing on Figure 7.2b, let us consider several putative criteria for choice. 
The subject may: 

1. Use representations of outcome sizes, or equivalently of the change 
they cause in energetic state, shown as ΔRA and ΔRB. Since these are 
equal, the subject would be indifferent.

2. Form distorted representations so that A is encoded as being bigger 
than B. This is shown in the cartoon representing the bird’s memory, 
where ΔRA appears larger than ΔRB. This may happen because the sig-
nifi cance of the change in state is greater when the animal is hungrier. 
If this happens, the bird will prefer A (or the red stimulus that causes it 
in our example).

3. Use representations of the significance, or value, consequent of the 
changes, shown as ΔHA and ΔHB, leading again to preference for the 
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stimulus causing A. This differs from second hypothesis because per-
cepts are encoded here veridically; their different affective consequenc-
es are encoded and then used. Hypotheses 2 and 3 can be differentiated 
by designing experiments so that the subject is induced to reproduce its 
 memory for each outcome rather than choosing between them.

4. Use representations of the slope of the value versus state function at the 
time of encounter with each stimulus (“red gives more value per unit of 
reward”). This appears as δA and δB. In this case, it would also lead to 
preference for A, but could be differentiated from the other hypotheses 
by using protocols where the magnitudes of A and B are not equal. 
Under hypothesis 4 the magnitude of the outcomes exerts no infl uence.

As we see, one hypothesis leads to indifference and three to preference for red; 
namely, the stimulus associated to greater hunger.

Such experiments were conducted in  starlings, fish, and locusts (Aw et al. 
2009, 2011; Marsh et al. 2004; Pompilio et al. 2006; Pompilio and Kacelnik 
2005). In all three species, the subjects preferred the stimuli associated with a 
state of greater need, refuting the possibility that direct representations of the 
metrics of the outcomes, without any additional encoding of value, may be 
sufficient to explain choice.
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Figure 7.2 A nonlinear relation between state and a measure of subjective value. (a) 
Depiction of a situation where an animal in a given state, R0, pays different costs CA
and CB for equally sized rewards, A and B, which then cause increases in reserves, 
ΔRA and ΔRB of equal magnitude, but with different consequences, ΔHA and ΔHB. (b) 
Depiction of a situation where the encounters with A and B occur when the subject’s 
state is manipulated so that A is encountered in R0

A and B in R0
B, where the former refers 

to stronger hunger. In both cases, because of the concave shape of the relation between 
state and consequences, A and B differ in value gain despite being equal in size. After 
Aw et al. (2011).
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Further experiments permit some level of differentiation between the sur-
viving three hypotheses. If the fourth hypothesis were true, the subjects would 
be indifferent to the size of the outcome. We can discard this in the  starlings 
because when the outcome metrics are manipulated, so that the stimulus as-
sociated with hunger takes values below that of the alternative, preferences 
for it decline and eventually reverse. This sensitivity to outcome magnitude 
eliminates (at least for the only species where it was tested) hypothesis 4.

Hypotheses 2 and 3 can also be differentiated for starlings. In experiments 
where outcomes A and B differed in the delay in delivery of food, it was shown 
that the birds’ preferences were independent of having accurate representations 
for the delays in both options (Pompilio and Kacelnik 2005). They sometimes 
preferred responding to receive outcome A in spite of knowing accurately that 
its metrics were worse (longer delay) than in outcome B. For locusts, however, 
preexistent neurobiological evidence indicates that it is likely that the gain of 
receptors is adjusted, so that they would perceive the stimulus associated with 
hunger as being more salient than the alternative. Admittedly this last matter is 
not as categorically sorted as the former; however the point here is to illustrate 
how the nature of the representation and its effect on choice can be uncon-
founded with suitable experimentation.

From an evolutionary standpoint, these studies provide an example of con-
vergence to the same choice mechanism (i.e., state-dependent valuation learn-
ing) in a set of very distant organisms, raising the question of its adaptive 
signifi cance (for an evolutionary model, see McNamara et al. 2012).

Multiple Attribute Problem

Choosing between options  with many attributes is a fundamental problem of 
decision making and provides another illustration of the impact of representa-
tion. Broadly speaking, there are two approaches. One approach attempts to 
measure each option directly through a common currency. Suppose that we 
are attempting to decide which of two apples to eat, and each varies in both 
size and taste. Very crudely, according to this approach, we attempt to value 
the apple based on, say, size and taste, as having a certain utility (say 23 vs. 
25 “utils”). The apple that is assigned the highest value is preferred. If people 
could stably associate such complex objects with values using such an internal 
currency, then choices would be highly stable and transitive. However, the 
problem with such “object-based” comparisons is that it is extremely diffi cult 
to know how to map complex objects onto utilities; indeed, when people are 
asked to do this explicitly using evaluations, the results are notoriously un-
stable (e.g., Hsee and Rottenstreich 2004).

Attribute-based comparison is an alternative approach. Here, the agent does 
not evaluate each apple separately. Instead, the apples are compared according 
to size (e.g., apple A is slightly bigger than apple B) as well as taste (apple A
is a very much less tasty variety than apple B). Each attribute thus provides a 
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potential argument for or against the choice of apple A or B. The agent then at-
tempts to weigh these “arguments”: the big difference in taste may overwhelm 
the small difference in size, and result in apple being chosen.

Almost all versions of attribute-based decision making will not be equiva-
lent to any object-based approach. For example, if one object is valued slightly 
better on one dimension, and yet identical on all others, it will be chosen nearly 
always. From the attribute-based view, this is easily exploitable, because there 
is just one “argument” for one object, and none against it. By contrast, the 
choice between two objects, such that one is better on attribute f while the other 
is better on attribute g, will be highly unstable, because the agent has two al-
most equally good arguments to trade off (Loomes et al. 2012). Moreover, if the 
object has three attributes, which are appropriately arranged, then  Condorcet’s 
paradox may arise (see earlier discussion). 

Internal Confl ict

Some decidedly irrational behaviors in humans and other animals appear to 
refl ect “confl ict” in the decision-making machinery.  Rats offered both food and 
shock at the end of an alley, for instance, oscillate at a certain distance from 
them; this behavior could indicate confl ict between approach and avoidance 
mechanisms. Human alcoholics willingly take drugs that will make them sick 
when they next consume alcohol. Livnat and Pippenger (2006) argue that if 
behavior is generated by a decision-making system that is subject to compu-
tational constraints, if confl ict is defi ned in a particular way in terms of util-
ity functions, and if parts of the decision-making machinery can be assigned 
utility functions based on information theoretic considerations, then even an 
optimal system designed for a single purpose can comprise agents that are in 
confl ict with one another and may occasionally produce maladaptive behavior. 
In the rat case, this would involve approach and avoidance mechanisms that 
“selfi shly” optimize their respective goals, with computational constraints pre-
venting an optimal trade-off between the two goals; this results in maladaptive 
oscillations under certain parameters of food and shock.

The Evolutionary Theory of Decision Making

The synthesis of evolutionary theory and decision theory is achieved primarily 
by using  fi tness,3 rather than  subjective utility, as the common currency to com-
pare options (e.g., McNamara and Houston 1986), with fi tness optimized by 
natural selection rather than rational thought. What evolves are strategies (not 
preferences!) that maximize fi tness across the statistically variable sets of envi-
ronments encountered by members of a population over evolutionary time. The 

3 The number of descendants left far into the future.
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mathematical analysis of such strategies is termed  evolutionary  game theory 
(Maynard Smith and Price 1973; Maynard Smith 1982; for reviews of the strat-
egy concept in biology, see Hammerstein et al. 2006; Laubichler et al. 2005).

The substitution of  fi tness and natural selection for  subjective utility and 
rational thought, respectively, overcomes many of the conceptual limitations 
of  axiomatic decision theory. First, fi tness is a core concept in the theory of 
natural selection. Unlike subjective utility, it has an exceptionally strong theo-
retical justifi cation and applies to all forms of life, including viruses, bacteria, 
plants, and animals. Second, because fi tness is optimized by natural selection 
in a population over many generations, and not by cognitive processes within 
the agent, agents can behave optimally even with extremely limited computa-
tional abilities. In fact, the strategy concept can be applied not only to behavior 
but also to ontogeny and morphology (e.g., Hagen and Hammerstein 2005). 
Third, because natural selection acts to adapt agents in a population to their 
environment, there is a fundamental relationship between decision making and 
environmental structure (for a review of the increasingly productive interac-
tion between evolutionary biology, economics, and other social sciences, see 
Hammerstein and Hagen 2005).

This synthesis has implications that are not as widely recognized as they 
should be. In axiomatic decision theory, rational agents are characterized by 
their complete transitive preferences. The strategic behavior of agents in a par-
ticular context is the result of optimizing computations in the agents’ brains, 
which takes place more-or-less in real time. In evolutionary game theory, 
in contrast, the agent is a strategy executor rather than a utility optimizer. 
In particular, evolved agents do not have a fi tness utility function coded in 
their brains and do not compute how to optimize their fi tness (the distinction 
between agents that optimize over preferences vs. those that simply execute 
strategies might be critical for interpreting the seemingly anomalous results 
of some behavioral economics experiments; Hagen and Hammerstein 2006).

Ecological, or Substantive, Rationality

We do not wish to infer that, in evolutionary models, agents never optimize in 
real or ontogenetic time. When they do, however, it is in a circumscribed socio-
ecological domain (e.g., foraging or mate choice) that was important to fi tness 
over many generations. This requires a mechanism that makes some (possibly 
erroneous) commitments to the nature of the reality about which decisions 
and choices are being made, an approach to decision making dubbed  ecologi-
cal rationality (Simon 1956; Gigerenzer et al. 1999) or substantive rationality
(Chater, this volume).

The problem of characterizing the environments in which decision mecha-
nisms evolved, and the environments in which they operate (and the former 
could well differ from the latter), comes up in many different guises. For ex-
ample, in understanding the performance of a heuristic, one clearly needs to 
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know something about the range of situations in which the heuristic is applied. 
Moreover, a common and reasonable explanation of why we fail to observe 
globally optimal decisions is that the decision mechanism in question evolved 
to make decisions in a specifi c environment, and we would therefore hypoth-
esize that this mechanism should perform at a high level in that environment 
even though it performs poorly in other environments—a problem often re-
ferred to as an “evolutionary mismatch.” For instance, a popular hypothesis 
holds that human obesity occurs because humans evolved in conditions of rela-
tive scarcity, which, the argument goes, selected for a tendency to favor foods 
high in fat and carbohydrate, leading to overeating in the modern environment 
where these foods are plentiful (e.g., Nesse and Williams 1996). In such cases, 
the behavioral anomalies studied provide insight into the actual evolutionary 
pressures to which the decision mechanism was adapted.

Despite its importance, characterizing the environments in which a mecha-
nism evolved versus those in which it operates is often challenging and very 
seldom even attempted. Indeed, in most decision-making studies, consider-
ation of “the environment” never goes beyond the specifi c situation presented 
to subjects.

The research program suggested here has three components: (a) selecting 
the environment to characterize, (b) choosing the relevant dimensions of the 
environment to measure, and (c) evaluating and interpreting the performance 
of a hypothesized mechanism in the now characterized environment. Each 
presents a different set of challenges.

First, there is the problem of selecting the appropriate environment to char-
acterize. Should we study the current environment in which the animal lives 
or the environment it experienced in its selective past? From an evolutionary 
perspective, one is obviously most interested in the environment in which se-
lection has acted, but identifying this could be quite diffi cult. In most cases, 
one would have to make some type of  stationarity assumption (e.g., that the 
current environment fairly represents the “adaptation-relevant environment”). 
Stationarity could, of course, fail in several ways. A given lineage may have 
experienced a cyclic environment, for example, or its distribution might have 
covered a large geographic distribution such that the lineage has sampled a 
wide range of conditions.

Second, it is diffi cult to choose which attributes of the environment one 
needs to characterize. To make headway, we probably have to focus on a par-
ticular class of decisions. The best example stems from the study of the visual 
environment. In these studies, investigators have collected thousands of im-
ages of the human visual environment and characterized the properties, such as 
brightness and color distributions (Olshausen and Field 2000), allowing vision 
scientists to interpret the neural mechanisms of  visual process in terms of the 
statistical regularities of the visual environment. This is the best developed 
example that we know, and we suggest that it should be a model for future 
studies of the decision environment. We should, perhaps, point out that this 
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“best example” was developed to study the mechanisms of visual perception 
rather than decision making.

A hypothetical example that is directly applicable to decision making is the 
problem of the foraging environment. Suppose we consider a classic  foraging 
problem like  patch  exploitation (Charnov 1976; Stephens and Krebs 1986). 
We would want to know the probability distribution of patch types, the gain 
functions associated with these types, and distributions of travel times associ-
ated with these types. In general, we would not expect these properties to be 
independent of each other, so we would actually want to know, for example, 
the joint distribution of gain function properties and travel times. Moreover, it 
is clear that regularities, in the form of correlations between economic prop-
erties, are exactly the type of thing that might infl uence the evolved form of 
decision rules.

Assuming that one can solve the problems described above (and these prob-
lems should not be minimized), the problem of evaluating a decision mech-
anism, given a well-characterized selective environment, seems relatively 
straightforward. Yet, even here one must make decisions about the appropriate 
level of analysis. Crudely using this information to understand a hypothesized 
neural mechanism requires a different tool box than evaluating the perfor-
mance of a simple patch-leaving rule.

Even when there are mechanisms, such as  reinforcement learning, that 
solve many different classes of problems, there is a need for domain-specifi c 
adaptations. Reinforcement learning can only be deployed where selection has 
made relevant end-states rewarding, and prepared constraints on the types of 
actions or stimuli which can become associated with those rewards.

Clear examples of the role of preparedness come from conditioned  taste 
aversions in omnivores (Garcia and Koelling 1966; Rozin and Kalat 1971; 
Holder et al. 1988; see also Hammerstein and Stevens, this volume). The rel-
evant learning mechanisms make strong species-specifi c commitments to the 
nature of the cues that are likely to prove reliable in predicting the nutritive 
and pathogenic properties of the different foods that they must decide to ingest 
or not to ingest. Specifi cally, animals readily form associations between novel 
fl avors and gastrointestinal malaise but fail to do so when it the color of the 
food predicts ingestibility.

Interestingly, vampire bats do not readily form conditioned  taste aversions 
(Ratcliffe et al. 2003), although they are presumably able to learn associatively 
in other domains. Given that they do not encounter variation in the level of 
putrefaction of possible foods (since they ingest blood directly from healthy 
animals), this illustrates the role of natural selection in maintaining particular 
 associative  learning pathways for specifi c domains in particular lineages.

In another well-studied example, many animals, including insects, use the 
Sun as  a directional referent. To do this, they must learn the solar ephem-
eris, the compass direction of the Sun as a function of the time of day. The 
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mechanism that learns this makes strong a priori commitments to the form of 
this function (Dyer and Dickinson 1994).

In studies of humans, economists routinely take for granted that people 
making economic decisions should and do assume that their environment con-
tains other decision makers that have accurate knowledge of the relevant as-
pects of the world; decision makers who reason and make decisions in accord 
with principles of rationality identical to the principles that the decision maker 
herself employs.

Irrationality Revisited

Evolutionary decision theory provides powerful tools to help resolve the many 
apparent violations of  rationality assumptions in humans and nonhuman ani-
mals. Perhaps foremost among these tools is the comparative approach: deci-
sion making can be studied in numerous, often distant, branches of the tree 
of life, including, in principle, organisms without nervous systems, such as 
plants and bacteria. If a violation of rationality assumptions, such as hyperbolic 
discounting, occurs systematically across taxa as well as across ecological con-
texts within taxa, this provides a vital clue to the nature of evolved decision 
mechanisms.

Below we revisit some apparent violations of rationality assumptions dis-
cussed earlier in light of the evolutionary theory of decision making. In some 
cases, we fi nd that behavior which violates assumptions of  axiomatic decision 
theory is, from an evolutionary perspective, adaptive.

Intertemporal Choice

How  is it possible that evolution has shaped a behavior—hyperbolic discount-
ing—that is so ubiquitous across domains and species, yet so apparently and 
dramatically maladaptive?  Optimal foraging theory (Stephens and Krebs 1986) 
might provide some insight.

Optimal foraging theory makes predictions about the behavior of an ani-
mal foraging in an environment with patches of food that vary in location, 
density, quality, and other variables. The animal needs to decide whether to 
put its background activity—foraging—on hold to enter a food  patch when 
encountered. Once the animal enters a patch, the marginal rate of energy return 
decreases with time because the patch is progressively depleted. The animal, 
therefore, needs to decide when to leave to seek the next patch.

When making such a decision, the animal has to take into account the cur-
rent (decelerating) energy gain rate, and thus the time between energy unit 
consumptions in the current patch and the time (and effort and  risk) needed to 
reach the next patch. Within the classical optimal foraging framework, animals 
have to trade off, among other things, delays and reward magnitudes. Hence, 
they face an intertemporal choice.
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Optimal foraging theory proposes that animals maximizing Darwinian fi t-
ness should use foraging strategies that maximize the net energy gain per time 
unit over the long term. In formal terms, it is assumed that organisms maxi-
mize, at least in the long run, the ratio of food intake and the time needed to 
obtain and consume the food (Stephens and Krebs 1986). In a choice between 
large, delayed rewards and small, short-term rewards, rate maximization pre-
dicts that animals prefer large rewards when the ratio of reward amount per 
time unit is higher for the large than for the small reward.

To illustrate the implications for putative consistency violations, assume 
an animal chooses between (a) two food items delivered after 2 seconds (rate: 
one item per second) and (b) four food items delivered after 8 seconds (rate: 
1/2 item per second); hence (a) > (b). Let us now play the economic game pre-
sented above and add a common time interval to both options: if both rewards 
were delayed by 10 seconds, the energy rate for option (a) would change to 
0.17 items per second (two food items after 12 seconds) and for option (b) to 
0.22 items per second (four food items after 18 seconds). Thus, in contrast to 
DU, optimal foraging theory predicts a preference reversal: the animal should 
prefer (a) over (b), but (b′ ) over (a′ ). The same behavior that is labeled irra-
tional in economics may be considered well-adapted in biology (e.g., Fawcett 
et al. 2011). 

Experimental work by Stephens corroborates this notion. He has shown that 
the same animals that perform poorly in traditional intertemporal choice tasks, 
similar to the ones described above, perform remarkably well in economically 
equivalent tasks whose structure, however, resembles more the patch-like en-
vironment under which the intertemporal choice policies presumably evolved 
(Stephens and Anderson 2001; Stephens 2002, 2008; Stephens et al. 2004).

Apparent Violations of Transitivity

Houston et al. (2007b) use the foregoing evolutionary strategic framework to 
obtain apparent violations of  transitivity. The term “apparent” is used because 
the violation appears if an observer takes the organism to be choosing between 
two options, ignoring the possibility that the organism is able to make repeated 
choices between options. The model involves a single state-dependent rule for 
choosing between two options, given that these options will always be avail-
able to the organism in the future.

Specifi cally, it is adaptive for a foraging animal to consider the alternative 
food sources when determining the value of a given source. If the value of one 
food source depends on the nature of the alternative food sources available, 
intransitive choices can occur. Assume an animal is foraging in an environ-
ment containing food sources that can be characterized, among others things, 
by reward magnitude, reward probability, and  predation  risk. For example, a 
starving animal may prefer a rich, but risky (high predation risk) food source 
(source A) over a poorer, but safer food source (source B), and may prefer B 
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over a rich, safer source that has, however, a low reward probability (source C; 
thus preferring A > B and B > C). Under certain circumstances, this animal may 
prefer the rich, safer source C with the low reward probability over the rich, but 
risky source A, thus preferring C > A, because the availability of the high-risk 
source A acts as an insurance against the outcome variance of option C. The 
animal could fi rst try out the low-risk patch C, and, if no reward is found, it 
could still opt for source A, which yields a large reward with a high probability, 
albeit at a high  predation  risk. 

At the level of these strategies there is no intransitivity; for any pair of op-
tions, there is a single best state-dependent strategy. Even if experiments do 
not involve repeated choices (as in this model), animals might use rules that 
evolved to cope with environments in which the options that are available to a 
decision maker persist into the future. Migrating birds are seen to use current 
food availability to predict future food availability (Houston 1997), for ex-
ample, and humans might also behave as if interactions will be repeated (e.g., 
Hagen and Hammerstein 2006).

 Multiple Attribute Problem

Russo and Dosher (1983) maintain that, in multiattribute choice (e.g., a deci-
sion between gambles varying in reward probability and magnitude), an agent 
comparing the levels of the attributes separately will fail to treat each option 
as an integrated whole, but will evaluate the available options much faster and 
with fewer errors than an agent integrating probability- and reward-represen-
tations into a single utility representation for each option. Assuming that the 
world is structured in such a way that attribute-based comparisons generally 
result in recommendations similar to utility-based comparisons, then attribute-
based policies will be favored by evolution because of their supremacy over 
utility-based policies in terms of processing speed and accuracy, which, how-
ever, comes at the (possibly small) cost of occasional intransitivities.

These are not the only optimality accounts of intransitive choice (Houston 
1991, 1997). They do, however, illustrate the gist of the idea that evolution 
may not have favored choice consistency, but the development of mental poli-
cies that were adapted to the environment in which they evolved.

Two Open Questions

Specificity versus Generality of Decision Making

The  heuristics-based approach (known in behavioral ecology as the  rules-of-
thumb approach) correctly and usefully separates the functional from mechanis-
tic aspects of decision processes, yet it tempts theorists to propose overly spe-
cific heuristics. For instance, there have been a number of heuristics proposed 
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for whether people fi nd a message persuasive. These include the “audience re-
sponse heuristic” (Axsom et al. 1987), the “consensus heuristic”(Giner-Sorella 
and Chaiken 1997), and the “endorsement heuristic” (Forehand et al. 2004), all 
of which suggest that the more positively the message is received by others, 
the more positively it will be received by the target (but which vary based on 
the specifi c nature of who the “others” are). There is also the “likability heuris-
tic” (Chaiken 1980)—people are more persuaded by likable speakers—and the 
“expertise heuristic” (Ratneshwar et al. 1987) which suggests that people are 
persuaded more by experts.

Instead of having a repertoire of extremely specifi c heuristics, it might be 
that there is a more general strategy that the highest validity, positively va-
lanced information available in a given context is what determines persuasion. 
More generally, the most valid information to a given task is used to solve that 
task. Indeed, Shah and Oppenheimer (2008) have argued that there may be 
only fi ve general forms of  heuristics, and that other heuristics can be created as 
specifi c instantiations of a combination of these elemental heuristics.

Kacelnik (this volume) suggests that one robust, heritable, broad-domain 
algorithm might be when facing a novel problem, display an inherited broad-
domain behavior, and then use outcomes to modify the response in the appro-
priate direction (basically, a loose version of reinforcement learning). As an 
example, he considers a puppy that is trying to reach a moving ball; initially 
it runs directly to the ball, thus having to correct its direction constantly and 
being highly ineffi cient. With experience, the puppy starts to anticipate these 
corrections and may converge to a constant angle of gaze control in its chases. 
The point here is that there was no need to postulate that a heuristic for con-
stant gaze was selected through evolution. What was selected in this case was 
the very broad “learning through consequences” mechanism, which the puppy 
uses for such different situations as identifying which human is more likely to 
deliver a treat versus a kick, which plants sting, what size of puddle is jump-
able, or how to catch a moving object.

By developing more general principles rather than a laundry list of heuris-
tics, we have more broadly predictive theories as well as more plausible targets 
for natural selection.

Substantive versus Formal Rationality

Two types of mechanisms that might be present in the cognitive systems of hu-
mans and nonhuman animals can be distinguished: those which embody  sub-
stantive and  formal rationality. Mechanisms involving substantive rationality 
assist the organism in reasoning or decision making, by embodying contingent 
aspects of the world or fi tness-relevant goals. For example, as we mentioned 
earlier, Olshausen and Field (2000) measured spatial statistics of natural im-
ages, and argued that the receptive fi elds in the early cortical  visual processing 
area V1 may arise because they are optimized to encode the image using the 
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minimum number of active neurons. (Substantive rationality is similar to eco-
logical rationality; we use the former term because we want to remain agnostic 
about some of the theoretical commitments of Gigerenzer and colleagues, with 
whom the latter term is closely associated.)

Substantive information may be more abstract, such as the apparently 
strong constraints on how bees learn to use the movement or the Sun in  navi-
gation (Wehner and Rossel 1985). It also may include procedures, such as nest-
building or information concerning fi tness-relevant goals of the organism, such 
as food and sex. This substantive information contributes to the fi tness of the 
organism, in the context of its actual environment and ecological niche.

In contrast, there might be cognitive mechanisms that embody formal ra-
tionality; that is, mechanisms that do not themselves make commitments to 
the nature of reality but instead impose a priori consistency constraints that 
are critical to the adaptiveness of decisions. For example, virtually all decision 
making must take account of the uncertain (probabilistic) nature of the input on 
which the decision is based.  Bayesian inference, the normative form of proba-
bilistic inference, provides the formal rationality constraints for this problem 
and therefore yields optimal results. Insofar as one believes that evolution op-
timizes the properties of critical mechanisms, a biological decision-making 
machine should have mechanisms that implement Bayesian inference.

For Bayesian reasoning, the problem specifi city, or substantive content, is 
found in the “support” (in the statistical sense of the word); that is, in the rep-
resentation of the possibilities. Prior probabilities (or probability densities) and 
likelihoods are defi ned over this support. For example, in deciding where one 
is, the support is the vector space of one’s possible locations. In deciding on 
what course to follow, the support is the points on the unit circle (the possible 
compass directions in which one could head). In deciding on whether one is 
within the radius around one’s goal within which one should stop the straight 
run toward the goal and initiate the search pattern (Wehner and Srinivasan 
1981), the support is the possible distances from the goal. In deciding whether 
to respond to a cue that may or may not predict the time of occurrence of an 
event of interest, such as the onset of food availability, the support is the mea-
sure of how well the onset of the predictor predicts the onset of the predictee. 
This support is the interval on the entropy dimension between 0 and the source 
entropy (because the mutual information between the predictor and the pre-
dictee cannot be negative and cannot be greater than the source entropy, the 
amount of uncertainty about when the next predictee might occur; Balsam and 
Gallistel 2009).

The prior probability distribution specifi es the probabilities (or probabil-
ity densities) of the different possibilities in the light of both analytic con-
siderations and evidence that has already been processed. An appeal of the 
Bayesian formulation is that it naturally melds information instilled in the 
genes through evolutionary time (McNamara and Houston 1980) with infor-
mation acquired by the animal. The likelihood function specifi es the likelihood 
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of the possibilities in the light of the latest input to the processor (latest signal, 
newest data). The support for the likelihood function is the same as the sup-
port for the prior distribution; namely, the representation of the possibilities. 
The posterior likelihood function is the point-by-point product of the prior 
distribution and the likelihood function. It specifi es the relative likelihood of 
different possible states of the world “all considered.” When normalized, it is 
the posterior probability distribution.

Some cognitive scientists and neuroscientists have suggested that compu-
tational mechanisms which carry out (some approximation to)  Bayesian infer-
ence may be implicated across perception,  language processing, and  inference 
(e.g., Chater et al. 2006; Knill and Pouget 2004). Here we illustrate how formal 
Bayesian inference procedures could decide on behavioral outcomes. A given 
behavioral option will have various outcomes associated with it. Each out-
come can be associated with a value which may be subjective or, in the case 
of evolutionary explanations of behavior, is its reproductive value. Once the 
prior information is combined with available information to form the posterior 
distribution, the posterior probability of each outcome can be computed. The 
expected (mean) value of the behavioral option can then be computed. This is 
the average value of the outcome, where the average is formed by weighting 
each value by its corresponding (posterior) probability of occurrence. When 
there are a range of possible behavioral options, the decision process will select 
the option with the greatest expected value.

Another foundational mechanism that operates across all domains is a sys-
tem of the arithmetic processing of quantities; it enables the elaboration of the 
representations upon which decision making is based (Gallistel 2011). That 
is, arithmetic manipulation is necessary for constructing the model that medi-
ates the decision, no matter what the substance of the model (Gallistel 2011). 
Navigational computations use arithmetic to establish vector space representa-
tions from which ranges (distances) and bearings (directions) may be comput-
ed.  Computations of the mutual information between events distributed in time 
use arithmetic as well, but they do not use it to create vector spaces. Instead, 
they use it to compute entropies (amounts of information). In both domains, 
arithmetic is used to carry out the Bayesian inference (i.e., to take the product 
of the prior distribution and the likelihood function to marginalize or integrate 
the result) to take the ratio of different likelihoods (i.e., to form Bayes factors) 
and to multiply Bayes factors by prior odds.

Similarly, consistency conditions for linking beliefs, values, and actions are 
provided by various types of decision theory. Indeed,  statistical decision theory 
has proved to be a powerful framework for understanding perceptual motor 
control and simple perceptual choice tasks (e.g., Bogacz et al. 2006).

The distinction between substantive and formal rationality raises a number 
of questions: Which organisms have mechanisms that capture different aspects 
of substantive and formal rationality? Which, if any, organisms embody mech-
anisms for formal rationality at all? How might the “tinkering” of evolution 
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(Jacob 1977), and perhaps also learning mechanisms, apply substantive or for-
mal mechanisms outside their original domain. Could there be general princi-
ples underlying the inferential “machinery,” and their implementation in neural 
circuitry, which might be carried across many aspects of brain function? When 
should we attribute an organism with specifi c substantive rationality (e.g., con-
cerning particular algorithms for  navigation), and when is it appropriate to 
postulate, in addition, principles of formal rationality concerning, for example, 
the principles of Euclidean geometry, which might underpin such navigational 
strategies? Is it necessary that we postulate that substantive or formal informa-
tion is represented? What neural or behavioral evidence might help in answer-
ing such questions?

Policy Implications

We have argued that consistency is not the only standard against which to 
evaluate the quality of a decision since what is irrational, from the classical 
point of view, could, from a biological perspective, be adaptive. However, we 
cannot escape the conclusion that time-inconsistent preferences are a problem 
for the individual and society, even if they make sense from an evolutionary 
perspective: if everyone were slave to their present bias, and there is evidence 
that a signifi cant fraction of the population is, we would live in a society fac-
ing severe problems such as old-age poverty (as a result of the failure to take 
appropriate retirement provisions), severe health issues (as a consequence of 
the failure to pay regular health insurance premiums when not being ill), eat-
ing disorders (as a consequence of succumbing to the lure of tempting, yet 
unhealthy food), and fi nancial illiteracy (as a consequence of the inability to 
deal with loans and credit cards).

Hence, to generate policy recommendations, society needs a normative 
standard against which the quality of a decision can be evaluated. The problem 
is that a theory which performs well in explaining, describing, and predict-
ing behavior cannot tell us what people ought to do; evolutionary theory does 
not make policy suggestions. Thus, although we propose that all disciplines 
concerned with the explanation, description, and prediction of decision mak-
ing (e.g., economics, psychology, behavioral ecology, and  ethology) should 
eventually converge to a unifying framework on how decisions are made, this 
would not displace the need for a modern normative standard. A bold and cer-
tainly controversial proposition would be that the normatively fl avored ap-
proaches in neoclassical economics, such as revealed preferences, are nothing 
but normative (i.e., they have no descriptive, explanatory or predictive value), 
and that other, more evolutionary fl avored approaches replace them. If we ad-
hered to this proposition, we would have two sets of theories: one that does 
well in describing, explaining, and predicting human (and animal) behavior, 
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and one that prescribes choice by telling us what we ought to do. Any discrep-
ancy could then be used for policy intervention.

Caveats

To truly advance the science of decision making, an evolutionary approach 
will need to do a number of things. First, it must offer more than the con-
cept of  optimization, which is already broadly used in psychology, but without 
the evolutionary constraints (e.g., Anderson 1990). Second it must offer more 
than comparison with other species, which again, already infl uences decision 
theory. Third, it must go beyond simply documenting between-species differ-
ences in decision making by making testable predictions about both cognitive 
mechanisms and behavior that apply to a particular species, especially humans. 
Fourth, it needs to provide constraints that are generally instructive. An impor-
tant theme of this chapter is that decision-making mechanisms were shaped by, 
and might take advantage of, the structure of the environments in which they 
evolved. When it comes to humans, some aspects of the ancestral environment 
are certain. For instance, women got pregnant and men did not—a fact that un-
doubtedly infl uenced the evolution of mating and parenting psychology. Other 
aspects of the ancestral human environment, such as sex differences in social 
status, are unknown and might never be known. A related challenge is that it 
is often diffi cult to distinguish between behaviors or cognitive patterns and 
strategies that have been learned versus those that evolved by natural selection.

Finally, even if evolutionary perspectives advance psychological theoriz-
ing, it is important to note that there are many other approaches that can also 
be generative. As such, we would not want evolutionary theorizing to replace 
or subsume other, useful approaches, but rather it should add to the theorist’s 
toolbox.

Concluding Remarks: Levels of Analysis

As in any science, we seek a compact account of decision-making processes 
in evolved systems that is as simple as possible, but no simpler—one that is 
parsimonious, yet able to capture everything that is systematic in biological 
decision making. Such a theory would enable us to understand and anticipate 
the properties of decision-making mechanisms not yet investigated. It would 
enable us to understand the many seemingly paradoxical aspects of human 
decision making in personal, interpersonal, societal, and economic contexts.

The account we seek should extend across the levels of analyses of cognitive 
processes delineated by  Marr (1982). It should describe the  representations on 
which decisions are based, because, by specifying the alternatives or options 
between which the decision is to be made, they strongly constrain the results 
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of the decision. It should offer guidance on what constitutes an appropriate 
and functionally adequate representation of the alternatives. It should describe 
how the representations are computed and the  computations that mediate the 
decision itself. This is  Marr’s  algorithmic level of analysis. Finally, it should 
include a specifi cation of the (mostly neural) mechanisms and processes that 
implement these algorithms.

We advocate an evolutionary account of decision making. Evolutionary 
thinking emphasizes function: many organismal structures are best explained 
as effective means to some end. Evolved decision-making mechanisms would 
therefore be designed to optimize some resource or outcome that was important 
to fi tness (e.g., energy, mates, and offspring number and quality). Functional 
thinking, in turn, requires a focus on the structure of the organism’s environment: 
the mechanisms which have been optimized by natural selection to function in 
particular environments. For decision-making mechanisms, this environmental 
structure would include the risks, time delays, and threats typical of the environ-
ment in which the organism evolved. Evolutionary explanation also involves the 
gradual modification of a biological lineage, and conserved structures from this 
lineage, from  refl exes to computational patterns in neural circuits, might poten-
tially have profound effects for modern human decision making.

Such a theory will provide a conceptual unifi cation, bringing together the 
currently very disparate bodies of work in the many disciplines that study de-
cision-making processes and mechanisms.
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