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Abstract: Previous whole-brain functional connectivity studies achieved successful classifications of
patients and healthy controls but only offered limited specificity as to affected brain systems. Here, we
examined whether the connectivity patterns of functional systems affected in schizophrenia (SCZ), Par-
kinson’s disease (PD), or normal aging equally translate into high classification accuracies for these
conditions. We compared classification performance between pre-defined networks for each group
and, for any given network, between groups. Separate support vector machine classifications of 86
SCZ patients, 80 PD patients, and 95 older adults relative to their matched healthy/young controls,
respectively, were performed on functional connectivity in 12 task-based, meta-analytically defined net-
works using 25 replications of a nested 10-fold cross-validation scheme. Classification performance of
the various networks clearly differed between conditions, as those networks that best classified one
disease were usually non-informative for the other. For SCZ, but not PD, emotion-processing, empathy,
and cognitive action control networks distinguished patients most accurately from controls. For PD,
but not SCZ, networks subserving autobiographical or semantic memory, motor execution, and theory-
of-mind cognition yielded the best classifications. In contrast, young–old classification was excellent
based on all networks and outperformed both clinical classifications. Our pattern-classification
approach captured associations between clinical and developmental conditions and functional network
integrity with a higher level of specificity than did previous whole-brain analyses. Taken together, our
results support resting-state connectivity as a marker of functional dysregulation in specific networks
known to be affected by SCZ and PD, while suggesting that aging affects network integrity in a more
global way. Hum Brain Mapp 00:000–000, 2017. VC 2017 Wiley Periodicals, Inc.

Key words: schizophrenia; Parkinson’s disease; normal aging; support vector machine; resting-state
fMRI; functional connectivity; brain networks; machine learning
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INTRODUCTION

Schizophrenia (SCZ) and Parkinson’s disease (PD) are
two of the most prevalent and socio-economically relevant
brain diseases [Andlin-Sobocki et al., 2005]. Although SCZ
onset typically emerges during adolescence and early adult-
hood [H€afner et al., 2013], PD is characterized by an onset
during late adulthood [Hughes et al., 1992; Poewe et al.,
2017] and has been associated with premature aging, that is,
earlier and more rapid neurodegeneration as compared
with the course of normal aging (NA) [Rodriguez et al.,
2015]. Both SCZ and PD are characterized by disease-
specific pathophysiological changes of the dopaminergic
system [Jankovic, 2008; Toda and Abi-Dargham, 2007], con-
trasting with a more global dopamine decline in NA
[B€ackman et al., 2006]. However, it has been proposed that
dopaminergic dysfunction in SCZ arises as a secondary
effect due to alterations of the glutaminergic system [Lar-
uelle et al., 2003]. In contrast, in PD dopaminergic deficiency
represents the primary cause leading to pathophysiological

upstream dysregulations of different neural systems [Obeso
et al., 2008]. These neurobiological features of SCZ, PD and
NA [B€ackman et al., 2006; Jankovic, 2008; Laruelle et al.,
2003; Obeso et al., 2008; Rodriguez et al., 2015; Toda and
Abi-Dargham, 2007] may manifest themselves in functional
connectivity alterations at the level of large-scale brain net-
works [Cole et al., 2013; Kelly et al., 2009; Narr and Leaver,
2015; Prodoehl et al., 2014; Sala-Llonch et al., 2015]. How-
ever, some putative commonalities (neurodegeneration,
dopaminergic dysregulations, and altered connectivity)
need to be juxtaposed with the prominent phenotypical dif-
ferences between SCZ, PD, and NA [B€ackman et al., 2006;
Jankovic, 2008; Narr and Leaver, 2015; Prodoehl et al., 2014;
Sala-Llonch et al., 2015; Toda and Abi-Dargham, 2007] and
the fact that the clinical presentations of SCZ and PD are
very different [Eaton et al., 1995; Jankovic, 2008; Kalia and
Lang, 2015; van Os and Kapur, 2009], raising the question
whether various functional systems are differentially
affected in the three conditions. Rather than assessing
altered activations in different functional systems by
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conducting task-based functional magnetic resonance imag-
ing (fMRI) studies, we examined altered functional connec-
tivity within various functional networks robustly defined
by meta-analyses of task-based neuroimaging studies in a
comparative fashion [cf. New et al., 2015; Schilbach et al.,
2016]. This has the practicable advantage of using easily
accessible, short and standardized resting-state (RS) data
while at the same time incorporating the consolidated
knowledge based on task-based imaging into the analysis.
We argue that such an approach is particularly relevant
given that in contrast to RS imaging, task-based assessments
will rarely be feasible in a routine clinical setting.

Alterations in functional network integrity patterns in
SCZ, PD or older adults (compared with respective
healthy/young controls) can be captured by using
machine learning-based classification. For extracting a
diagnostically relevant marker that allows the classification
of individual subjects based on the connectivity in func-
tional brain networks, multivariate decoding algorithms
like support vector machine (SVM) should provide the
most appropriate approach for this endeavor. Rather than
testing each connection independently for group differ-
ences, SVMs are trained on part of the data by weighting
all connections in order to separate the known clinical sta-
tus from healthy controls (HCs). Classification accuracy
can then be determined by assessing the ability to predict
group membership of previously unseen subjects. Applied
to (whole-brain) connectivity data, this approach has pre-
viously been found to distinguish SCZ patients [cf. Arbab-
shirani et al., 2016; Kambeitz et al., 2015; Wolfers et al.,
2015] or PD patients [cf. Chen et al., 2015; Long et al.,
2012] from HCs, as well as aged from young subjects (NA)
[cf. Meier et al., 2012; Vergun et al., 2013].

Previous pattern-classification studies aimed at providing
the best possible classification performance on whole-brain
connectivity. In contrast, the aim of this work was to assess
whether specific functionally defined networks are altered in
SCZ, PD, and NA. Although previous studies mainly used
Independent Component Analysis (ICA) based data-driven
methods to extract major RS networks [Damoiseaux et al.,
2006; Smith et al., 2009], our work is based on a priori meta-
analytically defined networks associated with specific sets of
behavioral functions such as working memory [Rottschy
et al., 2012] or emotional processing [Sabatinelli et al., 2011].
In contrast to well-established RS networks, these networks
represent the consolidated information from hundreds of
task-based fMRI studies and hence those locations in the
brain that are reliably activated when subjects perform tasks
pertaining to a particular mental function. We thus argue
that these nodes define robust functional networks in the
brain related to specific mental domains. In turn, the func-
tions associated with RS networks are usually derived from
a reverse inference approach, as these lack any direct rela-
tionship to mental functions [Poldrack, 2011]. We suggest
that this more direct relationship between the network-
nodes and actual task-demands is an important advantage
of our approach. Moreover, the employed strategy results in

an a priori, unbiased definition of the respective networks,
whereas ICA-based networks are usually defined from the
current data [Cole et al., 2010]. Our meta-analytically derived
network model approach thus offers the potential to investi-
gate functional connectivity within robust a priori brain net-
works that are implicated in processing a specific mental
process.

Therefore, this study aimed to examine whether the
known impairment of different functions in SCZ, PD, or
aging, respectively, would equally translate into a high
classification accuracy for a given network in the respec-
tive group, based on the connectivity pattern within this
network. As a “proof-of-principle” approach we therefore
intended to investigate whether various a priori networks
based on task-activation findings carry differential disease-
related information assessable by RS imaging. To this end,
we examined two diseases which are clinically very dispa-
rate but well studied in the previous neuroimaging litera-
ture. The findings were then juxtaposed to findings on
age-related effects in the same networks. Thereby, we
could evaluate whether the respective networks carry dif-
ferential information related to the different conditions or,
conversely, whether the different networks carry differen-
tial information related to a particular condition. Given
some putative commonalities and especially phenotypical
differences, the aim was to examine the possibility for dif-
ferential classification of SCZ, PD, und age, rather than to
primarily study the specific diseases and their clinical sep-
aration from each other or aging per se. In our investiga-
tion, these three groups thereby serve as examples to
evaluate this approach. For example, we assume that con-
nectivity in the reward (Rew) network will be potent in
differentiating SCZ patiens from matched HCs, as several
studies have shown impairments related to reward learn-
ing in SCZ, and the neurobiology of this network has been
linked to psychosis [Deserno et al., 2013; Heinz and Schla-
genhauf, 2010; Radua et al., 2015]. Likewise, we would
expect a good classification accuracy for PD patients based
on FC in the motor network, given that motor impair-
ments represent the core feature of this disease [Jankovic,
2008], and motor circuits in the brains of PD patients are
altered during motor tasks and at rest [Herz et al., 2014;
Prodoehl et al., 2014; Tessitore et al., 2014]. Finally, NA is
accompanied by cognitive decline in various domains
[Glisky, 2007], such as deterioration in working memory
function [Braver and West, 2008]. For the latter, age-
related neural changes have repeatedly been shown at task
[Dennis and Cabeza, 2008; Rajah and D’Esposito, 2005]
and rest [Keller et al., 2015]. Accordingly, we assume that
the working memory (WM) network allows a clear distinc-
tion between old and young adults.

In an explorative manner, we furthermore assessed a
broad set of networks associated with different behaviou-
ral domains (cognitive, social-affective, motivational, and
motor-related) since all three conditions (PD, SCZ, and
NA) show alterations in various functional domains on the
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behavioral and neural level [Barch, 2005; Duncan et al.,
2013; Seidler et al., 2010]. Importantly, in our approach, we
reasoned that classification performance may be interpreted
as an indication for the amount of information contained in
a given network regarding a particular disease or age sta-
tus, and thus of the degree of change observed in the integ-
rity of particular networks under these conditions.

We assume that classification performance will be best for
connectivity in those networks that subserve mental func-
tions known to be affected in SCZ and PD. SCZ is character-
ized by prominent social-affective/motivational alterations
[Brunet-Gouet and Decety, 2006; Deserno et al., 2013; Heinz
and Schlagenhauf, 2010; Kring and Elis, 2013; Radua et al.,
2015], whereas in PD motor impairments are most affected
[Herz et al., 2014; Rowe and Siebner, 2012; Tessitore et al.,
2014]. We, therefore, hypothesized that social-affective/moti-
vational and motor-related networks provide a superior clas-
sification of SCZ and PD patients, respectively. As both
diseases are accompanied by cognitive impairments as well,
we assumed that cognitive networks may also be predictive
to some degree [Barch, 2005; Duncan et al., 2013; Elgh et al.,
2009; Nieoullon, 2002]. As NA is associated with a broad
spectrum of decline affecting various functional systems
(albeit to a varying degree) [Hedden, 2007; Mather, 2016;
Seidler et al., 2010], we expected that most networks allowed
for an accurate discrimination of old from young adults.

MATERIALS AND METHODS

Samples

Schizophrenia

RS fMRI data and phenotypical information of 86 SCZ
patients and 84 HCs obtained from the COBRE sample
(http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html)
and the University Hospital of G€ottingen, Germany, were
included in the analysis. SCZ diagnosis was assigned as
assessed by the DSM-IV-TR based on the structured clinical
interview (SCID-P) and the International Classification of
Diseases (ICD-10), respectively. SCZ symptom severity was
assed using the Positive and Negative Symptom Scale
(PANSS) [Kay et al., 1987] evaluating the severity of positive
and negative symptoms as well as the general psychopa-
thology. Patients received their regular medication therapy
with considerable variability in the exact compounds used
and a high prevalence of combination drug therapy (medi-
cated patients but exact medication and dose unknown for
Olanzapine equivalent dose [Gardner et al., 2010]: COBRE:
50.9%; G€ottingen: 25.8%; medication status unknown:
COBRE: 1 SCZ patient; G€ottingen: 2 SCZ patients).

Parkinson’s disease

RS fMRI data of 80 PD patients and 84 HCs obtained from
the RWTH Aachen University Hospital and the University
Hospital D€usseldorf, Germany, were included in the

analysis. Diagnosis of PD was assigned by consultant neu-
rologists with longstanding expertise in movement disor-
ders based on clinical examination and review of the
medical history. Included PD patients fulfilled the standard
UK Brain Bank criteria for PD and had on average a mild
cognitive impairment as confirmed by the Montreal Cogni-
tive Assessment (MoCA) but no major depression symp-
toms [Hoops et al., 2009; Hughes et al., 1992; Nasreddine
et al., 2005].

To assess PD symptom severity and evaluate motor
impairments the Unified Parkinson’s Disease Rating
Scale Part III [Movement Disorder Society Task Force on
Rating Scales for Parkinson’s Disease, 2003] (UPDRS)
and Hoehn and Yahr Scale (H & Y Scale) [Hoehn and
Yahr, 1967] were applied. All patients were medicated
with their regular individual PD-related treatment (medi-
cation and dose unknown for Levodopa equivalent daily
dose [Tomlinson et al., 2010]: Aachen: 28.1%; D€usseldorf:
12.5%).

Healthy controls

RS fMRI data of HC (HCSCZ and HCPD) were obtained
from the four different sites as respective clinical subjects
(SCZ and PD), and were without any record of neurologi-
cal or psychiatric disorders as confirmed via structured
clinical screening.

Normal aging

RS fMRI data of 95 old (age range: 55–70 years) and 93
young (age range: 20–35 years) participants with an age
range of 15 years in each group were obtained from the
population-based 1000BRAINS study [Caspers et al., 2014]
and another separate study at the Research Centre J€ulich,
Germany. This relative small age-range aims to enhance
the subsample homogeneity. “NA” in old participants
refers to the absence of neurodegenerative diseases. Older
adults showed cognitive performance adequate for their
age (DemTect> 13) as assessed by the Mild Cognitive
Impairment and Early Dementia Detection (DemTect)
assessment [Kalbe et al., 2004] and all participants did not
exhibit clinically relevant symptoms for depression (BDI-
II< 13) as evaluated via the Beck Depression Inventory-II
[Beck et al., 1996].

Importantly, target and control groups (i.e., patients vs.
HCs, old vs. young adults) of all three samples (PD, SCZ,
NA) represent subsamples from larger samples that were
post-hoc matched for gender, within-scanner movement
and (only for the clinical samples) age (cf. Table I for sam-
ple and group matching characteristics). Written informed
consent from all subjects and approval by the local ethics
committees was obtained from all sites. Joint reanalysis of
the anonymized data was approved by the ethics commit-
tee of the Heinrich Heine University D€usseldorf.
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RS fMRI Data Acquisition, Preprocessing, and

Analysis

During image acquisition (see Supporting Information
Table SI for fMRI parameters), participants were instructed
to lie still, let their mind wander and not fall asleep (con-
firmed at debriefing). SPM8 (www.fil.ion.ucl.ac.uk/spm)
was used for image realignment, spatial normalization to
the MNI-152 template using the unified segmentation
approach [Ashburner and Friston, 2005], and smoothing
“5-mm full-width at half-maximum Gaussian kernel”.

We investigated 12 functional networks, robustly defined
by previous quantitative meta-analyses, to reflect neural
correlates of a broad set of cognitive, social-affective/

motivational and motor functions (see Table II for an over-
view and Supporting Information Table SII for detailed net-
work coordinates and corresponding brain regions). Only
meta-analytic networks with a minimum of 10 nodes were
included, since a lower number of features are uninforma-
tive for robust classification. RS functional connectivity
(RSFC) within each network was computed per subject by
first extracting the time-series for each node within 6 mm of
the meta-analytic peaks. To reduce spurious correlations,
variance explained by the six movement parameters and
their derivatives (modeled as first and second order effects)
as well as the mean white-matter and cerebrospinal fluid
signal time-courses was removed from the time series [Sat-
terthwaite et al., 2013; Varikuti et al., 2016]. Subsequently,

TABLE I. Sample and group matching characteristics

Sample n (males)
Age

(years)

Head
movement
(DVARS)

Age at
onset

(years)

Illness
duration
(years)

Antipsychotic/
dopaminergic

medication
Neuropsychology and

psychopathology

SCZ sample OZP-equivalent PANSS: Total/PS/NS/GEN

COBRE
SCZ patients 55 (46) 38 6 14 1.66 6 0.55* 20 6 8 17 6 14 13 6 8 58 6 14/14 6 5/14 6 5/29 6 8
HCscz 55 (42) 38 6 12 1.44 6 0.41

G€ottingen
SCZ patients 31 (25) 32 6 10 1.47 6 0.30* 25 6 8 7 6 8 14 6 9 52 6 11/12 6 3/13 6 4/28 6 6
HCscz 29 (22) 32 6 9 1.31 6 0.23

Total
SCZ patients 86 (71) 36 6 13 1.59 6 0.48*
HCscz 84 (64) 36 6 11 1.39 6 0.36

PD sample LEDD H & Y Scale UPDRS-III MoCA

Aachen
PD patients 32 (21) 64 6 9 0.51 6 0.16 59 6 8 6 6 5 449 6 238 2 6 1 23 6 12 27 6 2
HCPD 33 (20) 63 6 6 0.62 6 0.29

D€usseldorf
PD patients 48 (30) 59 6 9 0.69 6 0.26 51 6 9 8 6 6 1029 6 416 2.5 6 1 16 6 8 24 6 4
HCPD 51 (30) 57 6 9 0.68 6 0.22

Total
PD patients 80 (51) 61 6 9 0.62 6 0.24
HCPD 84 (50) 59 6 8 0.66 6 0.25

NA sample DemTect BDI-II

J€ulich
Old 48 (26) 61 6 5 1.58 6 0.41* 16 6 2 5 6 5
Young 52 (26) 26 6 3 1.24 6 0.24 5 6 4

1000BRAINS J€ulich
Old 47 (25) 64 6 4 1.79 6 0.43* 15 6 2 6 6 5
Young 41 (23) 28 6 4 1.28 6 0.26 4 6 4

Total
Old 95 (51) 63 6 5 1.68 6 0.43*
Young 93 (49) 27 6 4 1.26 6 0.25

SCZ, schizophrenia; HCSCZ, matched healthy controls (HCs) of SCZ sample; PD, Parkinson’s disease; HCPD, matched HCs of PD sam-
ple; NA, normal aging; characteristic values in mean 6 standard deviation; DVARS, derivative of root mean squared variance over vox-
els (head movement parameter) [Power et al., 2012]; significant difference in age (clinical samples), gender and movement are marked
with * for P< 0.05; SCZ: OZP-equivalent [Gardner et al., 2010], Olanzapine equivalent dose; PANSS, Positive and Negative Symptom
Scale, (PS, Positive Symptoms Scale/NS, Negative Symptoms Scale/GEN, General Psychopathology Scale); PD: LEDD [Tomlinson et al.,
2010], Levodopa equivalent daily dose; H & Y Scale, Hoehn and Yahr Scale; UPDRS-III, Unified Parkinson’s Disease Rating Scale Part
III; MoCA, Montreal Cognitive Assessment; NA: DemTect, Mild Cognitive Impairment and Early Dementia Detection, BDI-II, Beck
Depression Inventory II.
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time series were high-pass filtered retaining frequencies
above 0.01 Hz. Connectivity was computed as the Fisher’s
Z-transformed Pearson correlation between the time series
of each network’s nodes; connectivity values were adjusted
for effects of acquisition site, gender, movement, total brain
volume, and (only for the clinical samples) age [cf. Schilbach
et al., 2014, 2016] to avoid classification based on spurious
between-subject effects.

SVM Features and Classification

To examine whether the RSFC pattern of a network con-
tains predictive information on the respective groups (SCZ
vs. HCSCZ, PD vs. HCPD, old vs. young) non-sparse linear
two-class SVMs were computed using LibSVM [Chang
and Lin, 2011] (https://www.csie.ntu.edu.tw/~cjlin/
libsvm). SVMs’ were trained separately for each of all
three analyses (PD, SCZ, NA) and each of the functional
networks. Of note, we did not attempt between-patient
classification (i.e., PD vs. SCZ), as the different groups
were closely matched to their respective controls but sub-
stantially different from each other with respect to age,
gender, and movement. The input variables (features) to
the SVM consisted of edge-wise RSFC between all nodes
of a given network. Each SVM was trained and tested by a
nested 10-fold cross-validation scheme for each individual
group (see e.g., Fig. 1 [Xia et al., 2013]) [cf. Lemm et al.,
2011]. The inner loop used a 10-fold cross-validation
within the training group to optimize the soft-margin slack
parameter. For each fold of the outer loop, the left-out
(unseen) 10% were then classified using the SVM trained
on the (entire) training-set using the optimized parameter.
This nested scheme ensured that classifier optimization
and evaluation was performed independent of each other
[Kriegeskorte et al., 2009]. Classification performance was
evaluated based on accuracy (Acc.) balanced accuracy
(bAcc.), sensitivity (Sens.), and specificity (Spec.) as well as
two measures derived from signal-detection theory: the
area under the receiver operating characteristics (ROC)
curve (AUC) [Fawcett, 2004] and d’. Acc. denotes the over-
all proportion of subjects correctly classified as patients
(PD, SCZ) or advanced age versus healthy or younger age,
respectively. The bAcc. is calculated as the average pro-
portion of subjects correctly classified as patients (PD,
SCZ) or advanced age versus healthy or younger age,
respectively. Sens. indicates the percentage of patients
(SCZ or PD) correctly classified as ill or subjects correctly
classified as old in the aging sample (true positives). Spec.
in turn represents the fraction of HCs correctly classified
as healthy or subjects correctly identified as young in the
aging sample (true negatives). AUC refers to the area
under the ROC curve. An ROC curve depicts the relation-
ship between true positive rate and false positive rate, and
its AUC value indicates the sensitivity of the diagnostic
process independent of any specific decision criterion.
Finally, we assessed d’, an alternative index of diagnostic
sensitivity independent of the decision criterion, calculated
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as z(true positive rate) – z(false positive rate). To increase
robustness, the entire procedure was repeated 25 times,
and each performance measures was averaged across repe-
titions. To examine significant differences in classification
performance between networks within each group, pair-
wise t-tests were performed for each of the 12 networks
based on the accuracies obtained from the 25 cross-
validation outer loop replications of the separate SVMs
(significance threshold of P< 0.05, Bonferroni-corrected for
the number of pairwise network comparisons).

To compare the separately conducted classifications for
SCZ versus HCSCZ and PD versus HCPD subgroups, accu-
racies obtained for each individual analysis for every net-
work were converted to standardized z-scores by reference
to the binomial distribution reflecting chance level and
corrected for multiple comparisons by the amount of
networks-based classifications. Log-likelihood ratios were
estimated to identify networks showing better classifica-
tion performance for one patient group than the other. To

investigate significant differences in classification perfor-
mance between the groups, t-tests were calculated based
on the 25 accuracies obtained from the cross-validation
outer loop replications of the separate SVMs performed in
each group (SCZ, PD, NA) for each of the 12 networks
(significance threshold of P< 0.05, Bonferroni-corrected for
the number of groups and networks).

RESULTS

As expected, SCZ patients could be distinguished above
chance from matched HCs based on RSFC in the Rew net-
work (Acc. 5 68%; AUC 50.73). In turn, PD patients were
distinguished above chance from their matched HCs based
on RSFC in the motor network (Motor; Acc. 5 70%;
AUC 5 0.77). Finally, old and young subjects were differ-
entiated very well from each other based on RSFC in the
WM network (Acc. 5 79%; AUC 5 0.84). Results are

Figure 1.

Linear two-class SVM nested 10-fold cross-validation scheme.

Illustration of a SVM example for classification of the SCZ sample

based on the EmoSF network. As input variables (DATA) (5 fea-

tures) served the subjects’ RSFCs of all edges of every network.

The inner loop was performed in a 10-fold manner with 10 repeti-

tions conducted as parameter setting optimization on a training

sample. The outer loop was performed in a 10-fold manner with

25 repetitions conducted as classification accuracy testing on an

unseen test set. Classification performance measures are com-

puted based on the confusion matrix. Acc., accuracy; Sens., sensi-

tivity; Spec., specificity; AUC, area under the ROC curve and d’

(see “Materials and Methods” section for explanation). [Color fig-

ure can be viewed at wileyonlinelibrary.com]
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summarized as follows: Figure 2A for polar plot of group
classification accuracies, Table III for Acc., Sens., Spec. and
AUC, Supporting Information Table SIII for bAcc., Sup-
porting Information Table SIV for d’, Supporting Informa-
tion Figure S1 for z-standardized accuracies of all groups
and Supporting Information Figure S2 for variance of
accuracies.

Considering the performance of all functional networks
in distinguishing SCZ and PD patients from their respec-
tive HCs, a clear differentiation between networks

becomes evident, even though only 2 (SCZ) and 1 (PD)
out of 12 networks, respectively, did not significantly
exceed chance accuracy (Fig. 2B). The following results
and discussion are focused on networks with superior
classification performance for the respective disorders. In
this context, we would like to re-iterate that we did not
attempt to train any classifier to distinguish SCZ from PD
patients, since the two samples differed substantially from
each other in various confounding factors such as age,
gender distribution, and within-scanner movement.

Figure 2.

Group classification results of the SVM. (A) Polar plot of group

classification accuracies based on all 12 networks for SCZ (in

green), PD (in blue) and NA (in yellow). Accuracy refers to the

proportion of subjects correctly classified as patients (PD, SCZ)

or older age and subjects correctly classified as being HCs or

younger age. (B) Polar plot of z-standardized accuracies

(corrected for multiple comparisons) of patients classification

for SCZ (in green) and PD (in blue). (C) Log-likelihood ratios of

classification performance for networks showing higher classifi-

cation for one patient group vs. the other. [Color figure can be

viewed at wileyonlinelibrary.com]

TABLE III. Classification results of the SVM of all groups based on specific networks

Network (Abbr.)
SCZ vs. HCSCZ

Acc. (Sens./Spec.) AUC
PD vs. HCPD

Acc. (Sens./Spec.) AUC
Old vs. Young

Acc. (Sens./Spec.) AUC

EmoSF 72% (77%/68%) 0.79 63% (64%/63%) 0.68 88% (89%/86%) 0.93
ER 71% (77%/65%) 0.76 69% (74%/64%) 0.74 78% (79%/76%) 0.86
ToM 61% (74%/46%) 0.62a 67% (70%/64%) 0.71 78% (77%/80%) 0.84
Empathy 71% (73%/69%) 0.78 63% (61%/65%) 0.69 78% (80%/75%) 0.83
Rew 68% (73%/62%) 0.73 66% (70%/63%) 0.71 87% (85%/88%) 0.93
AM 62% (67%/57%) 0.71 75% (78%/73%) 0.76 80% (80%/80%) 0.89
SM 61% (67%/54%) 0.68a 69% (65%/73%) 0.75 84% (85%/83%) 0.90
WM 62% (65%/60%) 0.66 65% (68%/63%) 0.71 79% (80%/77%) 0.84
CogAC 68% (73%/63%) 0.69 62% (66%/57%) 0.67 73% (73%/74%) 0.83
VigAtt 68% (72%/63%) 0.72 65% (68%/63%) 0.67 80% (78%/83%) 0.89
MNS 64% (65%/63%) 0.73 57% (64%/51%) 0.53a 84% (83%/84%) 0.91
Motor 61% (72%/50%) 0.61 70% (68%/73%) 0.77 80% (79%/81%) 0.90

Abbreviations: Acc., Accuracy (in %)/Sens., sensitivity (in %)/Spec., specificity (in %)/AUC, area under the ROC curve.
aNetwork with no significant classification result.
Acc. refers to the proportion of subjects correctly classified as patients (PD, SCZ) or older age and subjects correctly classified as being
healthy or younger age (mean of sensitivity and specificity). Sensitivity relates to the percentage of patients (SCZ or PD) correctly classified
as being ill or else subjects correctly identified as old in the aging sample (true positives). Specificity relates to the percentage of healthy sub-
jects correctly classified as being healthy or else subjects correctly identified as young in the aging sample (true negatives). AUC refers to
the area under the ROCs curve. The ROC curve depicts the relationship between true positive rate and false positive rate.

r Pl€aschke et al. r

r 8 r

http://wileyonlinelibrary.com


For SCZ, the emotional scene and face processing
(EmoSF) network (Acc. 5 72%; AUC 5 0.79) as well as the
networks for empathic processing (Empathy; Acc. 5 71%;
AUC 5 0.78) and cognitive action control (CogAC;
Acc. 5 68%; AUC 5 0.69) distinguished patients most accu-
rately from their HCs. Hence these networks’ connectivity
patterns may be considered to contain the highest level of
information with respect to SCZ. The EmoSF network was
significantly better in the SCZ classification compared with
all other networks (P< 0.001). For PD, the networks sub-
serving autobiographical memory (AM; Acc. 5 75%;
AUC 5 0.76), motor execution (Motor; Acc. 5 70%;
AUC 5 0.77), semantic memory (SM; Acc. 5 69%;
AUC 5 0.75), and theory-of-mind cognition (ToM;
Acc. 5 67%; AUC 5 0.71) yielded the highest classification
accuracies, that is, contained the most informative PD-
related differences in RSFC. The AM network was signifi-
cantly better in the PD classification compared with all
other networks (P< 0.001). All network comparison results
within the patient groups are summarized in Supporting
Information Tables SV and SVI.

The between-network comparison of classification per-
formance with respect to SCZ and PD revealed that the
networks discriminating either disorder from their respec-
tive controls were highly specific (Fig. 2B,C), indicating
that these networks carry differential amounts of informa-
tion regarding SCZ and PD, respectively. In particular,
both EmoSF and Empathy networks showed the best per-
formance at distinguishing SCZ patients from HCs
(EmoSF: z 5 5.9; Empathy: z 5 5.5) but were notably worse
at discriminating PD patients from their HCs (EmoSF:
z 5 3.2; Empathy: z 5 3.2). Similarly, the CogAC network
exhibited high accuracy at classifying SCZ patients and
their respective HCs (z 5 4.7) but inferior performance at
distinguishing PD patients from their HCs (z 5 2.7).

In turn, the motor network very well classified PD
patients and their HCs (z 5 5) but was remarkably ineffec-
tive at classifying SCZ patients and their HCs (z 5 2.9).
Likewise, the AM and SM networks achieved high accura-
cies in classifying PD patients and controls (AM: z 5 6.3;
SM: z 5 4.5) but performed much less well when classify-
ing SCZ patients and controls (AM: z 5 3.2; SM: z 5 2.5).
Networks which were most accurate in distinguishing SCZ
from HCs (EmoSF, Empathy, and CogAC) exhibited signif-
icant better classification performance in the SCZ group
compared to the PD group (EmoSF: P< 0.001; Empathy:
P< 0.001; CogAC: P< 0.001; Supporting Information Table
SVII). Likewise, networks which performed best at dis-
criminating PD patients from HCs (AM, Motor, SM, and
ToM) showed significant better classification performance
in the PD group compared with the SCZ group (AM:
P< 0.001; Motor: P< 0.001; SM: P< 0.001; ToM: P< 0.001;
Supporting Information Table SVII).

This differential picture markedly contrasted with the
results obtained for the classification between old and
young subjects. In the aging sample, each network yielded

accuracies� 73% (see Supporting Information Table SVIII
for network comparison results within NA), significantly
outperforming every classification obtained in the SCZ or
PD samples (P< 0.001; see Fig. 2A, Supporting Information
Figure S1, Table III, Supporting Information Tables SIX
and SX).

In particular, for each network the accuracy for classify-
ing a previously unseen participant as young or old was
about 10% higher than any clinical classification based on
the same network. Additionally, the comparison of all
three separate group classifications revealed that the vari-
ance of the classification accuracies over the 25 replications
of the outer loop was distinctively lower for the classifica-
tion of age, as compared with classifying the clinical status
(Supporting Information Fig. S2).

DISCUSSION

We assessed whether RSFC patterns in a diverse set of
functionally defined brain networks allowed for a classifi-
cation of patients with SCZ or PD or healthy older adults
on the one hand, and their respective healthy or young
controls on the other. Thereby, we evaluated which func-
tional system was most informative for a given condition
(i.e., SCZ, PD, or higher age). Conversely, our analysis also
assessed the amount of information on each condition
found in a given network. Our results show in a proof-of-
principle manner that networks pertaining to functions
known to be affected by SCZ, PD, or aging indeed exhib-
ited good classification performance for the respective con-
dition. Furthermore, each network’s young–old
classification outperformed any disease-related classifica-
tion. This indicates that specific networks are affected by
and associated with the diseases, whereas for healthy
older adults RSFC appears to be altered rather globally.

Conceptual Considerations

Our study demonstrates that machine-learning techni-
ques can be successfully used to assess whether RSFC in
functional systems known to be affected in SCZ, PD, or
advanced age exhibits high classification capacity for the
respective condition. Further, our approach compared the
classification capacity of RSFC patterns between different
functional networks and between several clinical and
physiological states. Of note, for each classification, target
and control groups (i.e., SCZ vs. HCscz, PD vs. HCPD, old
vs. young) were well matched with respect to gender and
(for the clinical samples) age. In addition, RSFC variance
attributable to these confounding factors or within-scanner
movement was regressed out of the data before the SVM
analyses. Therefore, these confounds were evidently het-
erogeneous across the three groups (SCZ, PD, NA) but
should not have influenced classification accuracy within
each condition. In spite of proper matching and state-of-
the-art removal of variance related to motion [cf. Power
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et al., 2012; Satterthwaite et al., 2013], residual effects that
only manifest in the multivariate pattern cannot be fully
ruled out. However, one factor worth noting is that, for
example, we observed differential classification perfor-
mance across networks in the SCZ sample, largely ruling
out a dominant general effect of head motion.

Given that both groups were assessed under their regular
medication, differences in classification performance may
be influenced by pharmacological treatment. In particular,
we cannot exclude that classification results of networks
modulated via dopaminergic transmission (e.g., reward or
motor system) might originate from interactions between
disease condition and medication. Unfortunately, however,
we could not perform a more detailed assessment of the
influence of medication, as the compounds, duration of
treatment and doses varied considerably between subjects,
with many receiving a combination of drugs.

When comparing classification performance to previous
work based on whole-brain functional connectomes [cf.
Chen et al., 2015; Long et al., 2012; Meier et al., 2012; Su
et al., 2013; Tang et al., 2012; Vergun et al., 2013; Yu et al.,
2013], we note that our approach yielded higher functional
specificity, allowing inference on the amount of disease-
specific information in well-defined functional systems.
We acknowledge that even though most of the classifica-
tions well exceeded chance level, the achieved network-
based classification accuracies are not strong enough for
successful connectivity-based single-subject diagnosis. Still,
our “sparse” approach achieved classification accuracies
comparable to those reported in previous whole-brain
studies, whose feature space obviously was substantially
larger than ours. This is particularly noteworthy given that
two further aspects besides feature space could be
expected to decrease classifier performance in our study
[Arbabshirani et al., 2016; Haller et al., 2014; Kambeitz
et al., 2015; Schnack and Kahn, 2016; Varoquaux et al.,
2016]: First, all of our three groups were based on rela-
tively large samples that were combined from two differ-
ent measurement sites and hence should be more
heterogeneous than usual. Second, we used replicated 10-
fold cross-validation, rather than the more optimistic
leave-one-out approach [Varoquaux et al., 2016]. We thus
argue that the chosen combination of examining robustly
defined functional networks and optimized analysis
through replicated and nested 10-fold cross-validation
may provide valuable new insights into the pathophysiol-
ogy of brain disorders that is not attainable through global
analyses of the entire functional connectome.

Classification of SCZ Patients and Controls

We found that the networks subserving EmoSF,
empathic processing as well as CogAC yielded the best
performance. Aberrant processing of emotional stimuli
[Takahashi et al., 2004] and impaired abilities to relate to
others’ affective states [Benedetti et al., 2009; Derntl et al.,

2012; Harvey et al., 2012] are features of SCZ and mirrored
in the degree of SCZ-related information that is contained
in the EmoSF (AUC 5 0.79) and Empathy (AUC 5 0.78)
networks. Further, the good classification performance of
the CogAC network resonates well with alterations in cog-
nitive control processes as a core deficit in SCZ [cf. Lesh
et al., 2011].

Somewhat surprisingly, the Rew network did not differ-
entiate SCZ from HCs with high accuracy, given the prom-
inent role of the dopaminergic system [Toda and Abi-
Dargham, 2007] and aberrant salience processing in psy-
chosis [Heinz and Schlagenhauf, 2010; Radua et al., 2015]
and the association with the reward system in this disor-
der. We conjecture that this lack of predictive information
could arise from the fact that in contrast to task-activation
data, RSFC analyses primarily capture the tonic rather
than phasic state of these networks [Schultz et al., 1997].

Classification of PD Patients and Controls

The superior classification performance observed for the
motor execution network (AUC 5 0.77) is hardly surpris-
ing, since motor impairments represent a key clinical fea-
ture of PD, and differences in action-related brain circuitry
are well established in this disorder [Herz et al., 2014;
Rowe and Siebner, 2012; Tessitore et al., 2014]. The finding
that the AM (AUC 5 0.76) and SM (AUC 5 0.75) networks
also achieved a very good differentiation of PD patients
from HCs was rather surprising, though. Although PD is a
neurodegenerative disorder and dementia is common in
PD patients [Aarsland et al., 2001, 2003], several patients
showed evidence for mild cognitive impairment, using the
MoCA for screening. We can hence only speculate that the
RSFC differences in AM and SM networks may pick up
these deficits as revealed by standard behavioral screening
instruments.

Finally, the good classification performance achieved by
the ToM network (AUC 5 0.71) was unexpected but
matches a growing literature of impaired social cognition
in PD patients [Bora et al., 2015; Poletti et al., 2011; D�ıez-
Cirarda et al., 2015].

Age Group Classification

One of the most striking observations from this study
was that every single network achieved a better classifica-
tion with respect to age group than with respect to SCZ or
PD. While we hypothesized that the broad spectrum of
age-related changes in various mental functions [Craik
and Salthouse, 2011; Glisky, 2007; Seidler et al., 2010]
would be reflected by changes in several networks [Craik
and Salthouse, 2011; Hedden, 2007; Mather, 2016; Seidler
et al., 2010], the consistency (across both networks and
replications) of high classification accuracies is intriguing.
It stands to reason that the mechanisms underlying the
discriminative changes in functional connectivity patterns
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may be diverse. In particular, they should include neuro-
degeneration (cognitive networks [Hedden, 2007]), neuro-
chemical changes (Rew networks [B€ackman et al., 2006]),
altered affective processing (social-affective networks
[Mather, 2016]) and use-dependent plasticity (motor net-
works [Demirakca et al., 2016]). In addition, it may be
argued that in spite of all inter-individual variability age-
related changes represent a more homogeneous change of
the neuro-functional architecture [Ferreira et al., 2016;
Meier et al., 2012] relative to the inevitable heterogeneity
among clinical populations.

Given that connectivity patterns of all systems differenti-
ated very well between young and old participants, we
acknowledge the possibility that the relevant drivers may
be of non-neural origin. In particular, despite of our opti-
mized confound removal [Power et al., 2012; Satterthwaite
et al., 2013; Varikuti et al., 2016], we cannot exclude that
residual effects related to motion or brain atrophy as well
as physiological effects such as macro- and microvascular
changes and their cumulative impact on hemodynamic
signals [D’Esposito et al., 2003] may have contributed to
our findings.

Although the contributions of neural and non-neural
effects outlined in this section certainly warrant further
investigation, one of the most critical conclusions that
should be taken from the high classification accuracy
between younger and older participants is the danger of
obtaining spuriously high accuracies in clinical classifica-
tion studies if patients and HCs are not carefully matched
for age.

Conclusions and Outlook

We investigated the potential of RS connectivity patterns
in a wide variety of functional networks to distinguish
SCZ and PD patients from matched HCs as well as old
from young adults. We showed that networks defined by
robust activation due to mental operations known to be
affected in the respective condition indeed contained infor-
mation on the respective condition that is captured by our
pattern-classification approach and translates into good
classification accuracies. Classification accuracies obtained
through replicated, nested 10-fold cross-validation were
not only generally comparable to those obtained from
whole-brain analyses but also revealed a differentiated pic-
ture for both disorders in comparisons. Both SCZ and PD
were specifically well predicted by distinct networks that
resonate well with known clinical and pathophysiological
features. The presented approach thus opens an avenue
toward robust and more specific assessments of clinical
and developmental differences in functional systems than
previous whole-brain analyses. One of the most striking
findings of this work was the fact that integrity in all net-
works was much better at identifying participants with
advanced age than with any of the two disorders. While
the most likely heterogeneous mechanisms behind this

phenomenon certainly need to be addressed in more
detail, the current findings highlight the importance of
considering age-related effects as a potential source of bias
in clinical classification studies.
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