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SUMMARY

Neural activity in orbitofrontal cortex has been linked
to flexible representations of stimulus-outcome
associations. Such value representations are known
to emerge with learning, but the neural mechanisms
supporting this phenomenon are not well under-
stood. Here, we provide evidence for a causal role
for NMDA receptors (NMDARs) in mediating spike
pattern discriminability, neural plasticity, and rhyth-
mic synchronization in relation to evaluative stimulus
processing and decision making. Using tetrodes,
single-unit spike trains and local field potentials
were recorded during local, unilateral perfusion of
an NMDAR blocker in rat OFC. In the absence of
behavioral effects, NMDAR blockade severely
hampered outcome-selective spike pattern forma-
tion to olfactory cues, relative to control perfusions.
Moreover, NMDAR blockade shifted local rhyth-
mic synchronization to higher frequencies and
degraded its linkage to stimulus-outcome selective
coding. These results demonstrate the importance
of NMDARs for cue-outcome associative coding in
OFC during learning and illustrate how NMDAR
blockade disrupts network dynamics.

INTRODUCTION

An essential component of decision-making is the retrieval of

values associated with stimuli and utilization of this information

to select responses. Value is the net payoff, or outcome, that is

predicted to occur in the future given a stimulus or state. Recent

studies have shed light on the neuronal correlates of value repre-

sentations in the brain and how stimulus-outcome associations

are updated when task contingencies are changed (e.g.,
Padoa-Schioppa and Assad, 2006; Platt and Glimcher, 1999;

Sugrue et al., 2005). Across several species, the OFC has been

consistently implicated in coding and utilizing such representa-

tions during decision making. Stimuli elicit responses in orbito-

frontal neurons that are sensitive to future outcome (Hikosaka

and Watanabe, 2000; Padoa-Schioppa and Assad, 2006;

Schoenbaum et al., 2009; Tremblay and Schultz, 2000a,

2000b; van Duuren et al., 2008; Wallis andMiller, 2003). Comple-

mentary lesion studies suggested a causal role of OFC in the

updating of stimulus values and the assignment of credit to

behavioral choices associated with positive or negative outcome

(Baxter et al., 2000; Bohn et al., 2003b; Rolls et al., 1994;

Schoenbaum et al., 2002, 2009; Walton et al., 2010). However,

the neural mechanisms mediating these OFC functions are

largely unknown. Because electrophysiological studies provide

correlative data, it has also remained unknown whether neural

representations of value depend on mechanisms within orbito-

frontal cortex itself.

A promising starting point to investigate these mechanisms is

the N-methyl-D-aspartate receptor (NMDAR). This is motivated

by the glutamatergic nature of fast excitatory connections in

OFC, including its thalamic and cortical afferents as well as

intrinsic connections between its pyramidal cells (Hoover and

Vertes, 2011; Seamans et al., 2003; Wang, 1999). NMDARs

play a key role in synaptic plasticity, including both long-term

potentiation and depression (Lee et al., 1998; Malenka and

Nicoll, 1999; Selig et al., 1995). The role of NMDARs in mediating

learning-related changes in neural excitability in vivo has been

primarily studied in amygdala in relation to fear conditioning

(Goosens and Maren, 2004; Li et al., 1995) and in hippocampus

in relation to spatial memory (Ekstrom et al., 2001; Kentros et al.,

1998; McHugh et al., 2007; Morris et al., 1986), but not in the

context of associative stimulus-reward learning as exemplified

by OFC neurons.

Schoenbaum et al. (1998, 1999) showed that, during learning,

OFC neurons come to fire differentially to stimuli associated with

distinct outcomes, but it is unknown whether this selectivity

arises from local OFC mechanisms and depends on NMDAR
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Figure 1. Histology and Autoradiography

(A) Grayscale photomicrograph of a Cresyl-Violet stained coronal section

through OFC, showing the probe track and two tetrode endpoints. The cor-
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activity. Apart from a hypothesized role in long-term plasticity of

OFC firing patterns, NMDARs may contribute acutely to OFC

information processing: under depolarized membrane voltages

they contribute slow EPSP components to synaptic responses

(Herron et al., 1986), and these may help solve, e.g., pattern

discrimination and working-memory problems (Durstewitz

et al., 2000; McHugh et al., 2007; Wang, 1999). By the same

token, NMDARs may contribute to spike timing relative to the

phase of oscillatory local field potentials (LFPs), as hypothesized

for hippocampus (Buzsáki, 2002; Jensen and Lisman, 1996). If

NMDARs modulate the strength of spike-LFP phase locking,

they would be in a key position to affect the efficacy by which

OFC output excites target areas (such as striatum and basolat-

eral amygdala; Pennartz et al., 2011b) and to regulate down-

stream synaptic modifications by spike-timing-dependent plas-

ticity (Bi and Poo, 1998; Cassenaer and Laurent, 2007).

We applied the technique of reverse microdialysis in combina-

tion with multitetrode recordings to study howNMDAR blockade

affects discriminatory firing patterns and rhythmic mass activity

in the OFC of rats learning stimulus-reward associations and

reversals in an odor discrimination task (Schoenbaum et al.,

1998; van Duuren et al., 2007a). We show that NMDARs affect

discriminatory coding of OFC neurons especially during stimulus

presentation and decision making and shape plasticity of

discriminatory firing across learning trials. NMDAR blockade

leads to hypersynchronous phase locking in the theta, beta,

and high-frequency bands and destroys the functional relation-

ship between theta-band phase-locking and discriminative

power by virtue of firing rate. Unilateral blockade of NMDA

receptors does not affect behavioral performance during task

acquisition but hampers changes in reaction time after reversal

of task contingencies.

RESULTS

We recorded 623 isolated single units from four rats in 20 coun-

terbalanced sessions (number of sessions for drug/control = 10/

10) using a modified microdrive that held 12 tetrodes arranged

concentrically around a microdialysis probe (Figure 1). Histolog-

ical verification indicated that most recordings were from ventral

and lateral orbitofrontal (VO/LO) and agranular insular (AI) cortex

with some spread into dorsolateral orbitofrontal (DLO) cortex

(Figure 1A). For each rat, recordings were obtained under both

drug and control conditions. However, within a single session,

only one condition was applied. In drug sessions, we used

continuous reverse microdialysis to apply a 0.5 mM solution of
responding plate from the rat brain atlas by Paxinos and Watson (2007) is

shown for comparison.

(B) Calibrated autoradioactivity levels as a function of stereotaxic space in

a coronal section. Spread of activity from the probe is ellipsoid rather than

spherical, because diffusion took place along amembrane spanning 2mmDV.

Black bar indicates diameter of the tetrode ring (approx. 1.4 mm).

(C) Sagittal reconstruction of anterior-posterior spread of radioactivity, based

on averaged coronal activity (see Supplemental Experimental Procedures).

Purple line indicates alignment of sequential coronal activity profiles to the

estimated orbitofrontal-piriform cortex border.

(D) Side and bottom view (not to scale) of the combidrive, holding a concentric

ring of tetrodes around a microdialysis probe.



Figure 2. Behavioral Task and Effect of

D-AP5 on Raw and Relative Firing Rates

(A) Operant chamber; impression of rat making

odor poke (left) and fluid poke (right).

(B) Trial types; sequence of task elements on hit,

false alarm, and correct rejection trials. Iti, intertrial

interval; psd, prestimulus delay.

(C) Average number (±SEM) of trials to criterion,

normalized per rat to the average number of trials

to criterion for drug and control sessions for

that rat.

(D) Histogram of log2 transformed baseline firing

rates. Vertical lines correspond to mean firing

rates.

(E) Histogram of log2 transformed relative firing

rates to baseline during engagement in the task

(averaged from odor onset to outcome delivery). A

value of zero indicates that task and baseline firing

rate were equal. Conventions as in (D). **p < 0.01

(Mann-Whitney U test).

(A) and (B) adapted from (van Wingerden et al.,

2010a). See also Figure S1.
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D-2-amino-5-phosphonopentanoate (D-AP5), a competitive

NMDARblocker, dissolved in aCSF. A separate autoradiography

experiment with 3H-D-AP5 confirmed that the concentration of

D-AP5 in OFC was sufficient to antagonize NMDARs (Figures

1B and 1C). Infusions were done unilaterally to minimize the

chance of inducing behavioral effects, which could confound

the interpretation of electrophysiological results if present.

NMDA Receptor Blockade and Behavioral Performance
Rats performed a two-odor, go/no-go discrimination task, with

novel odor-outcome associations for each session (Figures 2A

and 2B; Schoenbaum et al., 1998; van Duuren et al., 2007a;

vanWingerden et al., 2010a, 2010b). Task acquisition was mani-

fested by the emergence of ‘‘No-go’’ and ‘‘Go’’ responses to the

odors predicting a negative (S� condition; ‘‘correct rejections’’)

and positive outcome (S+ condition; ‘‘hits’’), respectively. The

acquisition phase of the task was terminated when rats reached

a behavioral criterion (85% correct trials, i.e., hits + correct

rejections, in a moving 20-trial block), after which a reversal

phase followed, in which the previously presented stimulus-

outcome pairings were switched. We first examined overall
Neuron 76, 813–825, N
task performance, defined as the average

number of trials to reach criterion, nor-

malized per rat to the average number

of trials to criterion for all drug and control

sessions for that rat. Overall performance

did not differ between control and drug

sessions (mean ± SEM; control: 103% ±

8.6%, drug: 96.7% ± 9.6%, two-sided

t test n.s.; Figure 2C). Reaction time

(RT), i.e., the time between odor poke

termination and subsequent fluid well

entry, decreased with acquisition trial

number in the S+ condition for both the

control (Spearman’s rho = �0.24, p <

0.01) and drug condition (rho = �0.17,
p < 0.05; difference in slopes between conditions n.s., Fisher’s

Z test: p = 0.31), but not in the S� condition (‘‘false alarm trials’’;

p values: 0.82 [aCSF] and 0.24 [D-AP5]). RT was faster for hits

than false alarm trials, both for control and drug sessions

(p < 0.001 and p < 0.05, respectively; Mann-Whitney U test).

No significant difference in RT between control and drug

sessions was detected, neither for hits nor false alarms (p =

0.07 and p = 0.23, respectively; Mann-Whitney U test). Alto-

gether, the absence of significant behavioral differences

between the drug and control condition for the task acquisition

phase, indicates that electrophysiological comparisons between

these two conditions can be made in a comparable behavioral

context.

This finding contrasts with the early reversal phase, where we

did observe an effect of unilateral D-AP5 infusion. Here, the

mean Z-scored RT after reversal differed significantly from the

last 10 trials before reversal for both S+ to S� and S� to S+ tran-

sitions in control (p < 0.01, Mann-Whitney U test; see Figure S1

available online), but not drug sessions (p = 0.28, p = 0.76,

respectively). Direct comparisons between RTs indicated that

RT for aCSF and D-AP5 sessions did not differ for the last 10
ovember 21, 2012 ª2012 Elsevier Inc. 815



Table 1. Firing Rate Comparisons between aCSF and D-AP5 Units

Baseline (Hz) Odor (Hz) Move (Hz) Wait (Hz)

Raw FR aCSF; 144 cells 2.35 ± 0.33 2.37 ± 0.38 2.56 ± 0.40 2.37 ± 0.39

Raw FR D-AP5; 110 cells 1.78 ± 0.32 2.36 ± 0.43 2.01 ± 0.28 1.96 ± 0.32

FR (% of base) aCSF — 94 ± 4.7% y 104 ± 7.3% y 103 ± 6.4% y
FR (% of base) D-AP5 — 136 ± 13%** 142 ± 21% 138 ± 10% ***

Table 1 depicts the raw firing rate (FR) of putative pyramidal cells recorded under aCSF (n = 144 of 164 aCSF cells) or D-AP5 (n = 110 of 117 D-AP5 cells)

conditions, as well as firing rates relative to baseline (set at 100%). Baseline was defined as �3 to �1 s before odor onset, the odor period (Odor) as

0 to +1 s after odor onset, themovement period (Move) as 0 to +1 s after odor offset, and the waiting period (Wait) as�1 to 0 s before outcome delivery.

Group averages ± SEM are reported.
ySignificant differences between group (aCSF, D-AP5) means, p < 0.01 Mann-Whitney U-test.

**,***group mean significantly greater than baseline (100%), p < 0.01, 0.001, one-sample t test versus 1).
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trials before reversal (p > 0.05 for both S+ and S� trials, Mann-

Whitney U test). Postreversal, however, we found significant

differences in Z-scored RT between pharmacological conditions

for both S+ (ACQ) trials, now S� and S� (ACQ) trials, now S+

(p < 0.001 and p < 0.05, respectively, Mann-Whitney U test).

Effect of NMDA Receptor Blockade on Firing Rates
Out of the 623 recorded cells, 281 (117 for D-AP5, 164 for aCSF)

units were included for further analysis because of their respon-

siveness to perfusion (see Experimental Procedures). Unless

stated otherwise, all further analyses pertain to the acquisition

phase of the task. After exclusion of putative fast-spiking

interneurons (NaCSF = 20; ND-AP5 = 7) based on waveform char-

acteristics (van Wingerden et al., 2010b), we did not detect

a significant difference in the mean raw firing rate of putative

pyramidal cells between the control and drug condition for the

ITI (intertrial interval) baseline period (FRaCSF mean ± SEM:

2.35 ± 0.33 Hz, FRD-AP5: 1.78 ± 0.32 Hz, n.s., Mann-Whitney U

test; Figure 2D), and the three task periods leading up to the

outcome (odor sampling, locomotion from odor port to fluid

well, waiting period; Table 1). However, for all of these three

task periods we found increased firing rates relative to baseline

for the drug (across periods: mean ± SEM = 138% ± 9.5%, p <

0.01, Mann-Whitney U test; Figure 2E), but not for the control

condition (102% ± 3.7%).

Effect of NMDA Receptor Blockade on Discriminative
Power of Firing Rates
To examine whether D-AP5 affected the firing rate discrimination

between the S+ and S� condition, we performed an ROC

(receiver operator characteristic) analysis (cf. Green and Swets,

1966; Histed et al., 2009). For each unit, we examined to what

extent firing rates in fragments of 200 ms discriminated between

S+ and S� by computing the shuffle-corrected ROC area, called

Dcorrected (Figure 3): an index ranging from 0 (no discriminative

power) to 1/2 (maximum discriminative power; negative

numbers incidentally occur because of limited sampling). We

then averagedDcorrected across units, while balancing, for a given

rat, the number of cells entered in the analysis across pharmaco-

logical conditions. In the acquisition phase, D-AP5 caused

a decrease in Dcorrected values for the odor period (Figure 3; p <

0.01, Bootstrap test with Bonferroni correction). In this phase,

no significant drug effects were found in phases following odor

sampling.
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In the reversal phase, D-AP5 significantly reduced Dcorrected

values during the odor aswell as early and latemovement phases

(Figure S2). Units’ Dcorrected scores in the reversal phase may

reflect the sign (direction) of their acquisition-phase firing rate

selectivity or a reversed selectivity. In fact, maintenance of cue

selectivity across cue-outcome reversal has been linked to faster

reversal learning (Schoenbaumetal., 2007;Stalnakeret al., 2006).

To assess the consistency of firing rate selectivity, we applied

a sign function to the Dcorrected calculation. We found that, after

reversal, firing rate selectivity was preserved especially in the

odor sampling phase of control, but not drug sessions, whereas

firing rate selectivities showed a mixture of maintenance and

flips for the movement and waiting phases (Figures S3 and S4).

The observed effects of D-AP5 are unlikely to be a conse-

quence of changes in the prevalence of firing-rate correlates. A

unit was defined as having a firing-rate correlate for a given

task period if its firing rate in that period differed significantly

from the ITI firing rate. The distribution of firing rate correlates

did not significantly differ between control and drug conditions

across task periods (Table 2; chi-square test; df = 4; p = 0.64).

Plasticity in Discriminative Power of Firing Rates
One route by which D-AP5 may impact discriminatory firing is

through the impairment of NMDAR-dependent, long-term

synaptic plasticity, which may be required for neurons to

develop stimulus-outcome discrimination across learning trials.

Alternatively, NMDARs may acutely support discriminatory firing

because of their slow EPSP contributions. If the effects of D-AP5

are mediated via long-term plasticity, they should gradually

become more pronounced across trials. To investigate how

effects of D-AP5 on outcome-selective firing patterns develop

across trials, we examined single-trial contributions to ROC

discrimination scores using a leave-one-out procedure, yielding

pseudo discrimination (PD) scores per trial (see Experimental

Procedures). A positive or negative PD score for a given trial indi-

cated that inclusion of the trial had a positive or negative effect,

respectively, on the overall ROC. PD scores were averaged

across cells, separately for the odor, movement and waiting

period. For both the S+ and S� trials in the odor period, we found

an upward trend in average PD score over trials for the control

condition, with higher PD values compared to the drug condition

on later trials (p < 0.05, Bootstrap test against shuffled data;

Figures 4A and 4B). To quantify the magnitude of changes in

PD scores across trials, we first computed the mean difference



Figure 3. Discrimination of Firing Rates between S+ and S– Condition

(A) Bootstrapped mean of time-resolved Dcorrected values (shuffle-corrected ROC area), a measure of discrimination between S+ and S� trials. Time-resolved

traces are presented in three abutting windows (thick black boxes): aligned to odor onset, aligned to odor offset, and aligned to outcome delivery. Shaded area

corresponds to SD of bootstrapped population. Vertical dashed line: odor onset; vertical dotted line: fluid well entry; vertical dash-dotted line: outcome delivery.

Horizontal purple line indicates significant difference at p < 0.01 (bootstrap test, Bonferroni corrected).

(B) Histograms of bootstrapped mean Dcorrected values for units recorded under aCSF and D-AP5 during acquisition at time windows indicated by grayscale

horizontal bars on the time axis in (A). **significant difference in bootstrapped means, p < 0.01 (bootstrap test).

See also Figures S2–S4.
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in average PD scores between the first and last trial. For both S+

and S� trials, this difference was higher than zero for the control,

but not drug condition (Bootstrap test; p < 0.05, Figures 4E

and 4F). The mean difference score was higher for control than

drug units, for both trial types (p < 0.01, Bootstrap test).

Second, to model the relationship between mean PD score

and trial number, weperformed a regression analysiswith a linear

and exponential term. Best fits were obtained by iterative fitting

(Figures 4C and 4D). For both the S+ and S� condition, linear

and exponential parameters were significantly different from

zero for the control (i.e., the 95%confidence interval for the fitted

parameters did not contain zero), but not for the drug condition.

Finally, we note that during the movement and waiting periods of

control and drug sessions, the population averages of PD scores

did not show a clear upward trend across trials, indicating an

absence of significant plasticity of discrimination between trial

types in these periods. Thus, with learning, the discriminability

of spike train responses to odor stimuli slowly increased, and

selectively so for the odor period. This process depends, at least
in part, on NMDAR function. Overall, we found no significant

effect of D-AP5 on early learning trials, as would otherwise

have supported a function of NMDARs on acute processing by

slow EPSP contributions.

Effect of NMDA Receptor Blockade on Rhythmic
Synchronization
In addition to affecting firing rates and discriminative coding,

NMDARs may well regulate rhythmic mass activity as visible in

LFPs, and concomitant entrainment of OFC neurons to these

signals. We focused on odor sampling because of the strong

changes in ROC discrimination scores during this period, and

our previous finding of strong gamma- and theta-band synchro-

nization during stimulus processing (van Wingerden et al.,

2010b). In LFP signals, we found that D-AP5 induced a broad-

band increase in relative power for the theta-band as well as

frequencies above �20 Hz and a concurrent decrease in low-

frequency power (p < 0.05, Figure 5; multiple comparison

corrected [MCC] permutation test on T statistics; Bullmore
Neuron 76, 813–825, November 21, 2012 ª2012 Elsevier Inc. 817



Table 2. Distribution of Firing-Rate Correlates across Task Periods

Analyzed cells n = 281 Odor Move Wait Outcome NONE

aCSF sessions (n = 10) n = 164 cells 29 (17,6%) 22 (13,4%) 21 (12,8%) 27 (16,5%) 99 (60,3%)

D-AP5 session (n = 10) n = 117 cells 26 [21] 18 [16] 16 [15] 18 [19] 64 [71]

Distribution of cells recorded with a firing-rate change correlated to different task periods. Out of 281 analyzed cells, subsets responded to one or more

of the following periods (such that the sum of percentages exceeds 100%). Odor: odor sampling period; Move: movement/locomotor period; Wait:

waiting period; Outcome: fluid delivery period. Units in the NONE category did not exhibit significant firing-rate correlates. Percentages in parentheses

denote the fraction of cells out of the total number recorded under aCSF. Numbers in brackets indicate the (rounded) expected numbers of cells with

correlates in D-AP5 sessions given the relative frequency of these correlates in aCSF sessions. The distribution of cell counts over the five categories

did not significantly differ between aCSF and D-AP5 sessions (chi-square test, df = 4, p = 0.64).
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et al., 1999; Maris et al., 2007). We confirmed our previous

finding that LFP gamma-band power increases with trial number

and is predictive of learning (van Wingerden et al., 2010b). A

similar increase in LFP gamma power with trial number was

observed for the drug condition (Figure S5). However, we found

theta power to be negatively correlated with trial number in the

drug, but not control condition (significant difference in slopes

between D-AP5 en aCSF; p < 0.05; MCC permutation test;

Figure S5).

To investigate whether D-AP5 affects local phase-synchroni-

zation of single units, we computed the spike-LFP pairwise

phase consistency (PPC; Vinck et al., 2010, 2012). D-AP5 had

a three-fold effect (Figures 5C and 5D; p < 0.05, MCC permuta-

tion test on T statistics). First, it strongly increased theta locking

(�10 Hz) by about 100%. Second, a beta (20–25 Hz) rhythm

emerged, which was absent in the control condition. Third, it

increased spike-LFP phase-locking in the supra-gamma range

(110–160 Hz).

Finally, we tested whether D-AP5 altered the relationship

between neuronal discrimination scores and spike-LFP phase-

locking patterns. For the 0.5–1.0 s. period of odor sampling

(during which ROC values peaked) we correlated the unit’s

time-resolved Dcorrected ROC values with their spike-LFP PPC

values, separately for D-AP5 and aCSF. Differences in

Spearman-rank correlations between the drug and control

condition were observed in the theta and supra-gamma range

(Figure 6A; p < 0.05; MCC permutation test). For the control

condition, we found that spike-LFP theta PPC positively pre-

dicted Dcorrected, with significant correlations peaking (Figure 6B;

p < 0.05, MCC permutation test on difference in Spearman rhos)

around the time when the Dcorrected values peaked (0.5–1 s after

odor onset; Figure 3). However, in the same time window D-AP5

induced a negative correlation between Dcorrected and supra-

gamma PPC values (Figures 6A and 6C).

DISCUSSION

In conditions where a unilateral NMDAR blockade in rat OFC did

not affect task acquisition behavior and modestly increased

task-related firing rates relative to baseline, we showed that

this receptor plays a significant role in neural representations

discriminating between stimulus-outcome conditions and

plastic changes in firing patterns associated with learning these

representations. Especially during odor processing and

decision-making the capacity of OFC neurons to discriminate

between cues predictive of different outcomes was impaired
818 Neuron 76, 813–825, November 21, 2012 ª2012 Elsevier Inc.
by NMDAR blockade. In addition, NMDAR blockade increased

local rhythmic synchronization, as indexed by spike-LFP

phase-locking, particularly in the theta (�10 Hz), beta (20–

30Hz), and high-frequency range (110–150Hz). Finally, we found

a positive relationship between theta phase-locking and

neuronal discrimination scores under control conditions, which

was abolished by NMDAR blockade.

One concern, when examining drug effects on neurophysio-

logical correlates of cognitive processes, is that the drug may

affect behavior, which could in turn affect firing patterns in

OFC known to represent relevant behavioral task components

(Pennartz et al., 2011a; Schoenbaum et al., 2009). Bilateral infu-

sion of NMDAR antagonist in OFC has been shown to increase

impulsive responding and impair reversal learning (Bohn et al.,

2003b). Therefore, we chose unilateral drug application, and

indeed found that performance scores and reaction time (RT)

during task acquisition did not significantly differ between phar-

macological conditions (in line with, e.g., De Bruin et al., 2000).

However, upon transition to the reversal phase, RT for hit and

false alarm trials showed a characteristic flip in behavioral re-

sponding according to the reversed task rule in control sessions,

while such a flip was absent in drug sessions (Figure S1).

Changes in RT in this type of task are thought to depend on

OFC function (Bohn et al., 2003a; Schoenbaum et al., 2003a),

particularly during the reversal phase in which NMDARs have

been implicated by a previous study (Bohn et al., 2003b). Here,

we show that unilateral blockade of NMDARs produces

a comparable deficit in shaping discriminatory behavior accord-

ing to updated task rules.

Firing-Rate Effects of NMDA Receptor Blockade
in Comparison to Previous Studies
Previouswork indicated that systemic injections of a nonspecific,

open-channel NMDAR blocker (MK-801) in freely moving rats

leads to increments and decrements in average basal firing rates

in putative pyramidal cells and fast spiking interneurons, respec-

tively (Homayoun and Moghaddam, 2007, 2008; Jackson et al.,

2004). Here, we perfused a competitive NMDAR antagonist

(D-AP5) directly into the OFC and found that putative pyramidal

cell firing rates during the ITI did not significantly differ between

drug and control sessions (Figure 2D). However, drug infusion

induced a significant increase in relative firing rate during the

various task stages (Figure 2E). Thus, the results from the current

and previous studies differ insofar as we did not observe an

overall firing-rate elevation during the ITI, as was the case in (Ho-

mayoun and Moghaddam, 2007, 2008; Jackson et al., 2004).



Figure 4. Evolution of Discrimination Scores over Acquisition Trials

(A and B) Bootstrapped mean of pseudodiscrimination scores for the acquisition odor phase against S+ (A) and S� (B) trial number. Positive pseudodiscrimi-

nation scores indicate that a trial contributed positively to overall ROC area. Shading indicates SD of bootstrap distribution. Horizontal purple lines indicate

significant differences between group means (p < 0.05, Bonferroni corrected, bootstrap test).

(C) Best nonlinear fit (dashed lines) to the S+ group data (solid lines, as in A).

(D) as in (C), but now showing fits to the S� group data of (B).

(E) Bootstrapped mean difference in pseudodiscrimination scores between the first and the last trial of the acquisition phase (±SD across bootstraps).

*, **p < 0.05, p < 0.01; bootstrap test.

(F) as in (E), but now for the S� odor period.
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This difference may stem, first, from differential effects of sys-

temic versus local OFC applications. Systemic injections may

affect various stages of processing afferent to the OFC, e.g., in

themediodorsal thalamus, piriform cortex and basolateral amyg-

dala.Second, in contrast toD-AP5,MK-801actsasadissociative

anesthetic and impairs normal neural functioning, sometimes

even causing cell damage and neuronal swelling (Olney et al.,

1989). Whereas previous studies reported behavioral stereotypy

induced by MK-801, we showed that behavioral patterns were

not affected by local D-AP5 in the acquisition phase.

When considering a simplified circuit diagram of OFC pyra-

midal cells and interneurons (Figure 7), we may tentatively

explain the trend toward lower baseline firing rates of putative

pyramidal cells under D-AP5 by a reduction in recurrent OFC

network activity due to low afferent stimulation in the absence

of task-oriented behavior. When the animals were engaged in

the task, no significant differences in absolute firing rates

between pharmacological conditions were detected. These find-

ings do not support a general pyramidal neuron ‘‘hyperexcit-

ability’’ via a local reduction of NMDAR-mediated GABAergic

inhibition (Homayoun and Moghaddam, 2007, 2008; Lisman

et al., 2008), in line with a recent slice study indicating only

a minor role for NMDARs in fast-spiking interneuron activity

(Rotaru et al., 2011).
These findings are relevant for evaluating current hypotheses

on schizophrenia. An involvement of NMDARs in schizophrenia

is suggested by pharmacological studies of human volunteers

subjected to non-specific NMDAR antagonists, such as ket-

amine, and recent postmortem studies on schizophrenic

patients (Gilmour et al., 2012; Krystal et al., 2003; Lahti et al.,

2001; Malhotra et al., 1997). The NMDAR hypofunction theory

proposes that schizophrenia is associated with a reduction of

NMDAR-mediated currents at pyramidal-interneuron synapses,

resulting in low activity of interneurons and disinhibition of pyra-

midal neurons (Homayoun and Moghaddam, 2007; Lewis and

Moghaddam, 2006; Lisman et al., 2008; Olney et al., 1999).

Our data indicate that NMDAR blockade-induced hyperactivity

in OFC does not arise strictly from local mechanisms, because

a blockade did not significantly affect absolute firing rates of

putative pyramidal neurons. Such hyperactivity likely arises

from global interactions between OFC and other areas. Our

data further suggest that the reduction in neuronal cue-outcome

selectivity and plasticity could contribute to impairments in

OFC-dependent sensory gating and cognitive function as re-

ported in schizophrenic patients (Krystal et al., 2003; Lisman

et al., 2008). Finally, consistent with theories regarding schizo-

phrenia as a disorder of interareal connectivity (Lynall et al.,

2010; Stephan et al., 2009), our data show that local NMDA
Neuron 76, 813–825, November 21, 2012 ª2012 Elsevier Inc. 819



Figure 5. Effect of D-AP5 on Rhythmic Synchronization

(A) Average LFP power spectrum as a function of frequency. LFP power was

normalized by dividing by the total LFP power across all analyzed frequencies.

Shading indicates standard error of the mean. Spikes at 50 and 150 Hz were

due to removing spectrally confined line noise.

(B) Z-transformed difference in relative LFP power spectrum as a function of

frequency. Horizontal dashed lines: j1.96jSD thresholds; purple bars: p < 0.05,

multiple comparison corrected (MCC) permutation test on T statistic.

(C) Spike-LFP PPC as a function of frequency. Shading indicates SEM.

(D) Z scored difference in PPC values between drug conditions, as a function

of frequency. Crosses indicate significance at p < 0.05 (MCC permutation test

on T statistics).

See also Figure S5.
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hypofunction causes marked changes in spike-field phase-

synchronization, which may result in global dysconnectivity

between brain areas (Uhlhaas et al., 2008).

Orbitofrontal NMDA Receptors in Discriminating
Stimulus-Outcome Patterns
In line with Schoenbaum et al. (1998, 1999), who demonstrated

firing-rate selectivity in OFC for stimuli predictive of positive

versus negative outcome, we found that during acquisition the

electrophysiological S+/S� discrimination scores were signifi-

cant during the entire task sequence from odor sampling to

outcome delivery, both under drug and control conditions (Fig-

ure 3). D-AP5 diminished the discriminatory power of single units

only during odor sampling. Under aCSF perfusion, the discrimi-

nation score during odor sampling increased over trials, due to

adaptive changes in spike patterns across both S+ and S� trials

(Figure 4). NMDARblockade hampered the trial-dependent plas-

ticity of discrimination scores across learning during the odor

phase. The reduction in discrimination scores by NMDAR

blockade cannot be attributed to a difference in absolute firing

rates, because these did not differ significantly between pharma-

cological conditions for any behavioral period (Table 1). Upon
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reversal, under D-AP5 perfusion, units lost their prereversal

selectivity during cue sampling, while this selectivity was main-

tained for control units (Figure S3 and S4). Maintenance of

neuronal cue selectivity has been linked to faster reversal

learning (Schoenbaum et al., 2007; Stalnaker et al., 2006).

Here, we show that this maintenance of neuronal cue selectivity

is NMDAR-dependent. Altogether, these results support the

conclusion that NMDAR blockade renders firing patterns of

OFC units less robust in their discriminatory capacity during

task acquisition and reversal, which may compromise the effi-

ciency of OFC signaling during learning.

During acquisition, the discriminatory power of OFC neurons

was strongly affected only in the odor period (Figure 3A). At first

sight, these findings contrast with the reproducibly reported

coding of outcome expectancy parameters by OFC neurons

during post-decisional anticipation and processing of outcomes

(O’Neill and Schultz, 2010; Schoenbaum et al., 1998, 1999; van

Duuren et al., 2008). Because the present study combined

recording with local intervention, it presents a strong case for

an NMDAR-dependent mechanism in OFC for pre-decisional

processing of stimulus information, coupled to the retrieval

of odor-associated values predicting future outcome. Do

NMDARs primarily support learning-related synaptic plasticity

in OFC or are they of foremost importance in acute information

processing due to their slow-EPSP contributions? We found

that the firing discrimination score increased significantly with

learning during S+ and S� odor sampling in control sessions

(Figures 4A and 4B). On both S+ and S� trials, electrophysio-

logical discrimination scores diverged between control and

drug sessions with progressive learning, supporting the idea

that learning-related plasticity of OFC firing patterns is reduced

or lost with D-AP5 perfusion. Because the difference in dis-

crimination scores between control and NMDAR blockade

increased as learning progressed, the results suggest that

OFC NMDARs are important for expressing long-term plasticity

as underlying stimulus-outcome associative learning. Although

our results do not prove that NMDA receptors mediate synaptic

modifications within the OFC itself (because in theory they

could also relay information acquired in afferent regions such

as BLA; Groenewegen and Uylings, 2000; Mulder et al., 2003;

Schoenbaum et al., 2003b), there are several indications that

a mere relaying role can be considered unlikely. First, the

NMDAR-mediated component of synaptic potentials in PFC is

especially strong for recurrent, intracortical connections, not

for excitatory inputs from afferent regions (Rotaru et al., 2011).

Second, D-AP5 primarily affected OFC encoding during the

cue period and much less so during the later trial periods of

movement, waiting, and outcome. A crucial difference between

the predecisional cue period and the postdecisional phases is

that encoding of future outcome in these later periods does

not necessarily depend on novel learning in the session under

study, because it can rely on action patterns, cage- and fluid

well-related cues that have already been associated with the

outcome in previous learning sessions. If OFC NMDARs would

merely relay previously acquired information from afferent

regions, a stronger D-AP5 effect would have been expected

also for these later trial periods. Nevertheless, this issue merits

further investigation.



Figure 6. Relationship between Phase-Locking and Discrimination Scores

(A) Spearman rank correlations between spike-LFP phase consistency (PPC) and Dcorrected (shuffle-corrected ROC area) values during odor sampling period as

a function of frequency for cells recorded under control (blue) and drug (red) conditions. Horizontal purple lines indicate significance at p < 0.05 (permutation-

based multiple comparison correction).

(B) Spearman rank correlation between spike-LFP theta PPC (8–10 Hz, over entire odor sampling period) and time-resolved Dcorrected values relative to odor

onset. Plot conventions as in (A).

(C) Same as (B), but now for spike-LFP supra-gamma PPC (115–130 Hz).
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Regardless of the precise locus of plasticity, the question

arises how NMDARs may support computational operations

underlying decision making involving OFC. In addition to the

implication of OFC NMDARs in decision making under reversal

conditions (Bohn et al., 2003b), NMDARs in rat medial PFC affect

appetitive instrumental learning (Baldwin et al., 2000). During

odor discrimination learning, olfactory inputs need to be discrim-

inated and should be associated with outcome value as signaled

later in the trial. After initial learning, cue value must be associa-

tively recalled and coupled to an appropriate behavioral deci-

sion. Before the decision is executed, however, cue and value

information may need to be retained in working memory. While

NMDARs could in principle contribute to all of these operations,

a few possibilities stand out.

Pattern discrimination, perceptual decision-making and main-

tenance in workingmemory have been proposed to bemediated

by recurrent neural networks (Figure 7, Lisman et al., 1998;

Wang, 1999, 2002; Wong and Wang, 2006). In models of such

networks, NMDARs on synapses between pyramidal cells

contribute to reverberating, sustained activity capable of slow

integration of sensory evidence over time. Recent studies

showed that NMDARs at pyramidal-pyramidal synapses in the

deep layers of rat prefrontal cortex mediate sustained depolar-

ization, that sustained synaptic activity recorded in vivo from

prelimbic cortex of anesthetized rats depended on NMDAR

activity and that performance of a delayed-nonmatching to

sample task was impaired by NMDAR antagonists in dorsal

hippocampus (McHugh et al., 2008; Seamans et al., 2003;

Wang et al., 2008). Although such discriminatory and temporally

integrating mechanisms are predicted to operate during both

early and late learning, the use and loading of recurrent network

capacities may well change as learning progresses. In addition,

OFC NMDARs may function in the actual updating of synaptic

matrices encoding cue-outcome associations when reward

contingencies are changing (Figure S1; cf. Bohn et al., 2003b).
Effect of NMDA Receptor Blockade on Rhythmic
Synchronization
Rhythmic synchronization, i.e., coupling of oscillatory activity

across neurons and populations, has been hypothesized to

play a role in the temporal coordination of neuronal activity

between separate brain areas (Battaglia et al., 2011; Fries,

2009). Previous studies showed increments in gamma-band

coherence in the hippocampus and frontal areas of awake

rodents after peripheral application of non-competitive NMDAR

antagonists (Ma and Leung, 2007; Pinault, 2008). Using

a competitive NMDAR blocker, we did not observe a significant

difference in gamma-band spike-LFP phase-locking between

control and drug sessions, and found that NMDAR blockade

did not abolish changes in LFP gammapower over trials (Figure 5

and S5). Consistent with this discrepancy, an in vitro slice study

showed that NMDAR blocking effects on gamma-band oscilla-

tions are highly dependent on the brain region under scrutiny

and the mechanisms underlying gamma rhythmogenesis (Roo-

pun et al., 2008). Slice studies further showed that NMDAR

blockade increased the power of beta-band LFP oscillations in

some areas (e.g., prelimbic and entorhinal cortex), but not in

others (Middleton et al., 2008; Roopun et al., 2008). Thus, the

emergence of a 20–25 Hz rhythm under a competitive NMDAR

antagonist in behaving rats (Figure 5C) may likewise be region-

ally specific. The occurrence of phase locking to high-frequency

(supra-gamma) oscillations with NMDAR blockade is consistent

with a similar, ketamine-induced increase observed in high-

frequency oscillations in the striatum of awake rats (Hunt et al.,

2011).

Several recent studies indicated that firing-rate selectivity can

be predicted from a neuron’s pattern of synchronization to the

LFP (Battaglia et al., 2011; Dean et al., 2012; Womelsdorf

et al., 2012), suggesting that shared frequency and phase-of-

firing preferences are a mechanism of neuronal assembly forma-

tion (Buzsáki, 2010; Fries, 2005; Singer, 1999). Here, we made
Neuron 76, 813–825, November 21, 2012 ª2012 Elsevier Inc. 821



Figure 7. Simplified Circuit Diagram of OFC Network
Reduced circuit diagram of a local OFC network, showing cue- and reward-

related afferent input (red/orange excitatory inputs) on pyramidal cells (black)

and fast-spiking (FS) interneuron (blue; non-fast-spiking interneurons left out

for simplicity). Pyramidal cells project axons that synapse both on cells in

target regions and make local recurrent connections to other pyramidal cells

and fast-spiking interneurons. Fast-spiking interneurons make inhibitory peri-

isomatic synapses on pyramidal neurons using g-aminobutyric acid receptors

(GABAR, blue). Recurrent pyramidal-pyramidal synapses and pyramidal-

interneuron synapses express both AMPA receptors (AMPAR, magenta) and

NMDA receptors (NMDAR, green). The relative contribution of NMDAR-

mediated excitatory input in recurrent pyramidal-pyramidal synapses is

greater than in pyramidal-interneuron synapses. No NMDARs are included in

the axons conveying reinforcement (Reinf; outcome-related) signals to the

pyramidal cells, as modeling studies have indicated that such receptors may

not be necessary for reinforcement learning.
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a similar observation for the OFC: Neuronal firing rates were

particularly selective to S+/S� conditions when their spiking

activity was synchronized to the LFP theta rhythm (Figure 6).

NMDAR blockade abolished this relationship (Figure 6) and

reduced theta power over trials (Figure S5). In addition, it caused

firing rates to become less odor/outcome-selective when spikes

were synchronized to supra-gamma frequencies. Together,

these findings suggest a role for OFC NMDARs not only in firing

rate odor selectivity but also in rhythmic synchronization as

a mechanism to support this selectivity.

EXPERIMENTAL PROCEDURES

Behavioral Task

The general behavioral methods of this experiment have been reported else-

where (van Wingerden et al., 2010a, 2010b) and are reported in full in the

Supplemental Experimental Procedures online. All experiments were conduct-

ed according to the National Guidelines on Animal Experiments and with

approval of the Animal Experimentation Committee of the University of

Amsterdam. Briefly, four male adult rats were trained on a two-odor go/no-

go discrimination task (Figures 2A and 2B). Each session, two novel odors

were presented to the rat in blocks of 5 + 5 pseudorandomly ordered trials

with positive (S+) and negative (S�) outcome-predicting stimuli. Positive and

negative outcomes were sucrose and quinine solutions, respectively. The

behavioral sequence consisted of an ITI, onset of a light cuing trial onset,

odor sampling period (>750 ms), go/no-go movement period, waiting period

(with nose above fluid well, R1,000 ms) and outcome delivery. In the majority
822 Neuron 76, 813–825, November 21, 2012 ª2012 Elsevier Inc.
of sessions (n = 15 out of 20), the acquisition period was immediately followed

by a reversal period when a behavioral learning criterion was reached.

Recording Equipment

In order to combine simultaneous extracellular recording and local pharma-

cological manipulation, we adapted a microdrive to additionally hold a

replaceable microdialysis probe (cf. van Duuren et al., 2007b). Spike and

LFP recordings were made mainly from area VO/LO, with some spread in

AI and DLO (Figure 1A).

Drug Perfusions

In drug sessions, a 0.5 mM D-AP5 solution dissolved in aCSF (artificial cere-

brospinal fluid) was perfused at a speed of 4.0 ml/min through a probe

membrane spanning 2 mm in the dorsoventral axis. Probe function was

validated with perfusion of a 2% lidocaine solution, known to reversibly inhibit

spiking of neurons recorded on nearby tetrodes (van Duuren et al., 2007b).

Only units that responded to the wash-in and wash-out of the lidocaine

solution were included for further analysis (281 out of 623 units).

Quantification of D-AP5 Concentration in OFC Tissue

Control experiments were performed on an additional seven rats, in which we

applied radiolabeled D-[3H]AP-5 in aCSF using the same device. Rats were

sacrificed after either a 30 min or 2 hr perfusion period, and we inferred the

spatial spread of D-AP5 from the activity profiles obtained at these time points

(Figures 1B and 1C and Supplemental Experimental Procedures). We

estimated effective D-AP5 concentrations in OFC tissue to be in the range of

5–10 mM. This range of drug concentrations is known from slice studies to

have major blocking effects at NMDARs and to affect synaptic plasticity

(Colino and Malenka, 1993; Cummings et al., 1996; Davies et al., 1981; Herron

et al., 1986).

Analysis of Spike Data

Spikes were sorted into single unit data with automated algorithms (KlustaK-

wik and MClust 3.5) and manual refinement. We classified cells as responsive

to the odor, movement, waiting or outcome period (as described in van Wing-

erden et al., 2010a, 2010b).

ROC Analysis

To quantify the ability of firing patterns to discriminate between the S+ and

S� conditions, we performed an ROC analysis (cf. Green and Swets, 1966;

Histed et al., 2009) on single-unit spike patterns, correcting for positive

sampling bias through shuffle-correction (see Supplemental Experimental

Procedures). Single trial contributions (pseudo-discrimination [PD] scores)

to discriminatory power were calculated using a leave-one-out procedure.

Learning-related correlations between PD values and trial number were

assessed using a linear and a nonlinear regression of the type y = a + bx +

ecx (Figures 4C and 4D) where x is trial number and y the average pseudodis-

crimination score.

When reporting group data, we used the following ‘‘stratified bootstrap’’

procedure to remove the potential influence of systematic variance due to

intersubject variability: on each bootstrap repetition, we randomly drew equal

numbers (n = 50, with replacement) of units from the total pool of analyzed cells

per rat for the drug and control condition. Group data are reported asmeans of

such bootstrap populations ± SD of the bootstrap, which is a conventional

estimate of the standard error of the original data (Chernick, 2008). To assess

statistical differences, we compared the difference in bootstrapped means,

divided by the average standard deviation of the bootstrap populations, to

the normal distribution. We refer to this procedure as the ‘‘bootstrap test.’’

Analysis of Rhythmic Synchronization

Relative power spectra for the odor period were constructed by normalizing

the raw power per frequency to the total power in the [2, 200] Hz interval (Fig-

ures 5A and 5B). Spike-LFP phase-locking was computed using the pairwise

phase consistency method (see Supplemental Experimental Procedures;

Vinck et al., 2012). As above, group averages were constructed using the

stratified bootstrap procedure, and their significance was assessed by com-

paring the T-statistic of the bootstrap distribution to the normal distribution.
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