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Oscillatory activity is a widespread phenomenon in nervous systems and has been implicated in numerous
functions. Signals that are generated by two separate neuronal sources often demonstrate a consistent
phase-relationship in a particular frequency-band, i.e., they demonstrate rhythmic neuronal synchronization.
This consistency is conventionally measured by the PLV (phase-locking value) or the spectral coherence
measure. Both statistical measures suffer from significant bias, in that their sample estimates overestimate
the population statistics for finite sample sizes. This is a significant problem in the neurosciences where
statistical comparisons are often made between conditions with a different number of trials or between
neurons with a different number of spikes. We introduce a new circular statistic, the PPC (pairwise phase
consistency). We demonstrate that the sample estimate of the PPC is a bias-free and consistent estimator of
its corresponding population parameter. We show, both analytically and by means of numerical simulations,
that the population statistic of the PPC is equivalent to the population statistic of the squared PLV. The
variance and mean squared error of the PPC and PLV are compared. Finally, we demonstrate the practical
relevance of the method in actual neuronal data recorded from the orbitofrontal cortex of rats that engage in
a two-odour discrimination task. We find a strong increase in rhythmic synchronization of spikes relative to
the local field potential (as measured by the PPC) for a wide range of low frequencies (including the theta-
band) during the anticipation of sucrose delivery in comparison to the anticipation of quinine delivery.
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Introduction

Oscillatory activity is abundant in nervous systems and has been
implicated in numerous functions (Buzsa'ki and Draguhn, 2004; Fries,
2009; Gray et al., 1989; Pesaran et al., 2002). Two complementary
approaches exist for studying oscillations. First, the rhythmic
structure of the signals generated by a single source can be examined,
for example, by computing the spectral power of EEG (electroen-
cephalogram) or spike signals. Second, one can study the relationship
between signals generated by two separate sources, for example, by
computing the coherence between neuronal spike output and the LFP
(local field potential) or between two EEG or MEG (magnetoence-
phalography) channels. When the signals generated by two separate
sources demonstrate a consistent phase-relationship in a particular
frequency-band, then we refer to this property as rhythmic
synchronization. Studies have demonstrated task-modulated rhyth-
mic synchronization between local and distant neuronal groups in
many different areas and consistent task-modulated phase-relation-
ships of spiking output to the surrounding LFP (Buschman and Miller,
2009; Fries et al., 2008; Fries, 2009; Gregoriou et al., 2009; Lansink
et al., 2008; Pesaran et al., 2008; Siapas et al., 2005; Sirota et al., 2008;
Womelsdorf et al., 2007).

The two aspects of rhythmic synchronization that are linked to
particular functions are the phase of rhythmic synchronization (Fries
et al., 2007; Hopfield, 1995; O'Keefe and Recce, 1993; Vinck et al.,
2009) and the strength or precision of rhythmic synchronization
(Fries, 2005; Sejnowski and Paulsen, 2006; Singer and Gray, 1995;
Varela et al., 2001). The consistency of the phase-relationship is
typically quantified on the basis of a vector addition operation, i.e.,
the computation of the resultant vector length (Fisher, 1993), where
the vector represents the relative phase between two signals. Two
well-known instances of resultant vector length measures in the
experimental neurosciences are the PLV (phase-locking value)
(Lachaux et al., 1999) and the coherence measure (Mitra and Pesaran,
1999). Unfortunately, measures such as the PLV and the coherence
measure have positively biased estimators for finite sample sizes. This
e measure of rhythmic neuronal synchronization,
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is often a particular problem to the neurosciences, wherein data are
scarce and the number of observations (trials or spikes) is typically
not under the control of the experimenter but varies across subjects or
neurons.

Since the bias arises because of the vector addition operation, we
might avoid the bias by defining a different kind of measure that
avoids this operation completely. In this paper, we propose a new
measure of the consistency of phase-relationships, namely, the
pairwise phase consistency (PPC). The PPC computes the cosine of
the absolute angular distance (the vector dot product) for all given
pairs of relative phases, i.e., it computes how similar the relative phase
observed in one trial is to the relative phase observed in another trial.
We demonstrate that the PPC does not suffer from any bias, because it
is based on sequential pairs of observations. Importantly, we prove
that the population statistic of the PPC is equivalent to the population
statistic of the squared PLV. We compare variance and mean squared
error of the PPC and PLV and demonstrate the practical usefulness of
the PPC for analyzing actual neuronal data.

Material and methods

The problem of bias in measuring rhythmic synchronization

We are interested in the problem of how to measure whether the
signals that are generated by two separate sources demonstrate a
consistent phase-relationship in a particular frequency-band. In other
words, wewant to measure the strength of rhythmic synchronization.
In short, this problem will be referred to as how to measure phase
consistency. Two of the most widely used measures of phase
consistency are the PLV (phase-locking value) and the coherence
measure. The PLV and coherence measure have traditionally been
quantified for EEGEEG, MEG-MEG or LFP-LFP channel pairs but have
also seen successful application on spike–LFP pairs and spike–spike
pairs (Jarvis and Mitra, 2001). Central to the definition of the PLV and
the coherence measure is the mathematical representation of a
complex random variable

Xj = rjexp iθjð Þ; ð1Þ

where j=(1, 2,…, N), N is the number of observations, i =
ffiffiffiffiffiffiffiffi
−1

p
, θj is

the random relative phase between two signals at a particular
frequency-band and rj is the random non-negative magnitude
(usually the product of the channels' magnitudes) that is associated
with the relative phase. When the signals are both EEG, MEG or LFP
channels, j typically is an index for trial or segment number. When
one of the signals is a spike channel and the other signal is an LFP
channel, j will typically be an index for spike number. The starting
point of our paper is when the relative phases have been determined
from the data: We do not consider the important problem of how to
optimally determine phases, nor is our technique (pairwise phase
consistency, see below) exclusively bound to the use of a particular
family of transforms (e.g. wavelet or Fourier). Different approaches
exist for determining relative phases: For example, Fourier analysis is
often used to obtain a single-phase value per trial, in combination
with a particular choice of tapering, such as multitapering (Mitra and
Pesaran, 1999), whereas Hilbert or wavelet transform is often used to
determine the instantaneous phase as a function of time (Lachaux
et al., 1999; Quyen et al., 2001).

We follow the common definition of the sample estimate of the
PLV, which we will denote by the symbol Ψ, as

Ψ̂u
��� 1
N

XN
j=1

exp iθjð Þ
���: ð2Þ

Here, the superscript ̂ in Ψ̂ indicates that the variable is a sample
estimate. We have the bound 0≤Ψ̂≤1. The magnitude rj associated
Please cite this article as: Vinck, M., et al., The pairwise phase consis
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with the relative phase is ignored in the computation of the PLV by
normalizing the complex variable Xj to unity before addition. In the
context of circular statistics, the PLV corresponds to the resultant
length, but here we refer to it in the context of studying rhythmic
synchronization between two neuronal sources. The PLV (or resultant
length) is an important statistic because it computes the mean of the
cosine (real) and sine (imaginary) components of the relative phases
and thus indicates whether the data has a circular mean direction. If
the resultant length is zero, then both the cosine and sine components
of the vectors cancel each other out across observations.

For the coherence, which we denote by the symbol C, we do take
amplitude into account. We define rj ≡ mj1mj2, wherein mj1 and mj2

are the respective channels' non-negative magnitudes.
The standard definition of the sample coherence is

Ĉ uj PN
j = 1 mj1mj2 iθj

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

j = 1 m
2
j1

� � PN
j = 1 m

2
j2

� �r j ð3Þ

The sample PLV (Eq. 2) and sample coherence (Eq. 3) are estimates
of population parameters based on a finite set of observations. The
population PLV is defined by the Riemann–Stieltjes integral:

Ψu
��� Z π

−π
exp iθð Þ dPθ θð Þ

���: ð4Þ

Here, the magnitude associated with the relative phase is ignored
per definition and Pθ(θ) is defined as the cumulative probability
distribution function of θ. If the probability distribution of θ is
absolutely continuous, then dPθ(θ)=p(θ)dθ, wherein p(θ) is a prob-
ability density function, and Eq. 4 reduces to Ψu j R π−π p θð Þexp iθð Þdθ j .
If the probability distribution is discrete, Eq. 4 boils down to
Ψu jPK

k = 1 Pk θ = θkð Þexp iθkð Þ j , wherein k is an index for the K
discrete probabilities, and Pk(θ=θk) is the discrete probability of
observing the angle θk. We write Eq. 4 as a Riemann–Stieltjes integral,
because this generalizes the expected values to cases wherein the
cumulative probability distribution function is discrete or (absolutely)
continuous (the same reason applies to the Riemann–Stieltjes
integrals that follow).

The population coherence is defined by the Riemann–Stieltjes
integral

Cu
j R∞0 R∞0 R π−π m1m2exp iθð Þ dP θ;m1m2ð Þ jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E m2
1

� �
E m2

2

� �q ð5Þ

wherein P(θ,m1,m2) is the cumulative joint probability distribution of
θ, m1 and m2, and the operator E denotes expected value.

Both the estimate of the PLV (Eq. 2) and the coherence (Eq. 3) have
bias and variance that are known to depend on the number of
observations, such that E{Ψ̂}≥ Ψ and E{ ̂C}≥C. Both are consistent
estimators though, in that limN→∞Ψ̂=Ψ and limN→∞ ̂C=C. If we draw
a sample of N observations from a population, then the expected value
of the PLV estimate (Eq. 2) will decrease as N increases, while the
variance across the Ψ̂ estimates will decrease. The bias of the PLV is
shown in Fig. 2A, wherein we display the average PLV computed for
samples generated from a von Mises distribution (Best and Fisher,
1979; Fisher, 1993) with different values of the circular dispersion k
and a different number of observations. It is often said that the PLV
ranges between 0 and 1. While this is indeed true for a given sample
estimate, the expected value of the sample PLV does not range from 0
to 1 but has a dynamic range, which is determined by the sample size
and will in practice never approach 0: A completely uniform
distribution has a much higher expected value than 0 for small
sample sizes.
tency: A bias-free measure of rhythmic neuronal synchronization,
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The finite sample size bias can be informally explained by the
following example. Suppose that our relative phases are drawn from
the uniform circular distribution, which has probability density
p θð Þ = 1

2π. In other words, every phase is equally likely to be observed.
If the sample size N goes to infinity, we would expect that all phases
cancel each other out, such that the PLV approaches zero, i.e.,
Ψ = j R π−π

1
2π exp iθð Þdθ j = 0. However, the expected circular distance

between any pair of relative phases θj and θk (where j and k are
indices for different trials or spikes) is equal to 1

2 π (90°). Thus, if we
have only two observations, our resultant length is expected to be
larger than zero. Precisely, for two observations x and y, the expected
value of our sample PLV will be equal to

E Ψ̂
n o

=
Z π

−π

1
4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + cos xð Þ2 + sin xð Þ2� 	q

dx =
2
π
: ð6Þ

Here, we rotated both phases such that y=0 and only the variable
x remains, and cos(y)=1 and sin(y)=0. If we now add a third
observation, then the average distance of the new observation to the
resultant vector of the first two observations will again be 1

2π, which
will lead to a smaller resultant length. This process goes on until the
resultant length reaches the value of zero (because the distribution is
uniform).

The finite size sample problem is complicated by the fact that the
way ̂Ψ decreases as a function of the sample size depends on the type
of circular distribution. Suppose we have as a probability distribution
P 1

2 π
� 	

= 1
2 and P − 1

2π

� 	
= 1

2. As with the uniform circular distribution,
the population PLV (Eq. 4) is zero for this distribution. Suppose that
the sample consists of two observations. Either the observed phases
are equal to each other, thus the circular distance will be zero, or they
are orthogonal to each other, thus they cancel each other out
completely. Thus, the expected resultant length for two observations
will be E Ψ̂

n o
= 1

2 � 1 + 1
2 � 0 = 1

2. Suppose that the sample consists of
three observations. Then, we have (2)3=8 possible outcomes,
wherein two of the eight cases all observed phases are identical,
such that Ψ̂=1 for those observations. For all other possible
outcomes, we have two identical phases and one orthogonal phase,
such that Ψ̂ = 1

3. We thus have EfΨ̂g = 1
4 � 1 + 3

4 � 13 = 1
2. Thus, Ψ̂

converges in a non-continuous way to the population PLV (Eq. 4).
Fig. 2B compares the dependence of ̂Ψ on the sample size for this
distributionwith the uniform distribution. Both distributions have the
same population PLV (Eq. 4), but the expected value of the sample
estimate of the PLV (Eq. 2) converges in a very different way to the
population PLV. Any correction to Ψ̂ thus depends on the assumption
of a particular circular distribution.

Reducing the bias by fixing the number of spikes

Recently (Vinck et al., 2009; Womelsdorf et al., 2008), we
introduced a technique to reduce the positive bias of the sample
PLV and sample coherence estimate (Eqs. 2 and 3). We suggested that
we can reduce this bias by using the same number of observations for
every sample when comparing samples with a different number of
observations. For example, if we have a thousand trials in the first
sample and 50 trials in the second, we can reduce the bias by using
only 50 observations from the first sample to compute the PLV. To use
all available data, a bootstrap without replacement (i.e., every
observation can enter one bootstrapped sample only once) can be
used to reduce the variance of the new estimates. Thus, we introduced
the FSPLV (fixed-sample size PLV) estimate as

Ψ̂ fu
1
BF

XB
b=1

���XF
j=1

exp iθjb
� ����; ð7Þ

where b=(1, 2, …, B), with B as the number of bootstrapswithout
replacement and F as the fixed number of spikes, with F≤N.
Please cite this article as: Vinck, M., et al., The pairwise phase consis
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We argue that the FSPLV (see also the discussion for a direct
comparison with the pairwise phase consistency) still copes with
several disadvantages: First, because the bias curves depend on the
type of circular distribution, as shown in Fig. 2B, we can only compare
the FSPLV between two samples in an unbiased way when they are
drawn from the same probability distribution (that can have different
parameters). Bimodal or even more complex phase distributions are
not uncommon in neuronal data. For example, very strong phase-
locking at a higher frequency can cause a bimodal phase distribution
at the lower harmonic. Thus, when samples drawn from two different
types of distributions are compared, a systematic difference between
their samples' FSPLVmay arise, even though the population FSPLV can
be the same for the two distributions. Second, one has to choose the
arbitrary parameter F, and different choices of this parameter might
lead to systematically different conclusions. Moreover, if different
parameter values of F are chosen across different experiments, it will
be hard to compare the degree of phase consistency across
experiments, because we are essentially using a different population
statistic in every experiment. Third, it is not practical to use all
available data in the same way, because computing all possible
bootstraps is computationally not feasible. For example, if we have
10,000 observations, the number of unique bootstraps of size 50
equals ð1000050 Þ. That means that some observations might be used
more often than other observations and that some combinations of
observations are not taken into account. This will lead to a higher
variance of our sample estimates and also a variance of the outcomes
from run to run.

The pairwise phase consistency

Themain problemwith the sample estimate of the resultant length
(or PLV) is that its finite sample estimator is biased by the number of
observations. A measure that does not depend on the number of
observations is suggested by looking at pairs of observations instead
of all observations together. If phases are consistently clustering
around some mean phase, they will on average have a small angular
distance to each other.

We first introduce the average pairwise circular distance (APCD),
which computes the absolute angular distance between relative
phases. The APCD is defined by

D̂ u
2

N N − 1ð Þ
XN−1

j=1

XN
k= j + 1ð Þ

d θj; θk
� �

; ð8Þ

wherein d(φ,ω) is the absolute angular distance defined as the
function

d u;ωð Þu ju − ω j mod π ð9Þ

and θ j and θk are the relative phases from two observations (j and k
are indexing trials or spikes). There are in total N

2

� �
unique pairs that

are composed of different observations. In essence, D̂ computes the
average absolute angular distance between all observed relative
phases.

We define the population APCD by the Riemann–Stieltjes integral

Du
Z π

−π

Z π

−π
d u;ωð ÞdPu uð ÞdPω ωð Þ: ð10Þ

Here, Pφ(φ)=Pω(ω) is defined as the cumulative probability
distribution of the relative phase θj. If the random variables φ and ω
are absolutely continuously distributed, then dPφ(φ)dPω(ω)=p(φ)p
(ω)dφdω, and Eq. 10 reduces to the standard (Riemann) integral
Du

R π
−π

R π
−π p uð Þp ωð Þd u;ωð Þdudω.

To obtain a measure which has a similar dynamic range as the PLV
and the coherence, we normalize the APCD, giving rise to a new
tency: A bias-free measure of rhythmic neuronal synchronization,

http://dx.doi.org/10.1016/j.neuroimage.2010.01.073


Fig. 1. Explanation of the PPC. Each solid line represents an observation of the relative
phase between two different signals at a particular frequency. Pairs are composed of all
different observations. In total there are 1/2⁎N⁎(N Explanation of the PPC. Each solid line
represents an observation of the relative phase between two different signals at a
particular frequency. Pairs are composed of all different observations. In total there are 1/
2⁎N⁎(N− 1) unique pairs. In this case there are four observations, hence six unique pairs.
For every pair, the angular distance between two vectors can be computed. For example,
the angular distance between θ1 and θ3 is indicated by d13 and is equal to 45°. If phase
consistency is high, then the relative phases will have small angular distances relative to
each other. For every pair, we now compute the dot product between the two vectors,
which equals to cosine of the angular distance, i.e., the projection of one vectors onto
another vector. These are indicated with dotted lines. Red lines indicate a negative dot
product, i.e., anangulardistancegreater than90 , andblack lines apositivedot product. The
PPC is equal to the average dot product across all pairs and provides an unbiased estimate
of the squared PLV. Note that the angle between θ4 and θ3 equals 90 , hence the dot product
is zero. The average dot product is greater than zero, indicating that there is a circularmean
direction. PPC is lower than squared PLV. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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measure, which we call the pairwise circular distance index (PCDI)
and which we will denote by the symbol D⋆.

The PCDI is defined as

D̂B =
π − 2D̂

π
ð11Þ

where the superscript ⋆ in D⋆ indicates normalization. We have
−1≤D ̂⋆ ≤1, and 0≤D⋆ ≤1, with a value of 1 indicating complete
phase consistency (corresponding to an average distance between
pairs of 0) and a value of 0 indicating a complete absence of phase
consistency, which is the case for example with the uniform circular
distribution or a mixture of two von Mises distributions with an
orthogonal mean phase and equal dispersion.

An important question pertains to what the relationship is
between the population value of the PLV (or resultant length) and
the APCD and PCDI. Obviously, the resultant vector length is a very
important circular statistic, because it indicates whether the data have
an angular mean direction. The angular distance (Eq. 9) can be
alternatively written as d(φ, ω)=arccos (cos(φ) cos(ω) + sin(φ) sin
(ω)). This leads to the following relationship between the PLV and the
APCD: We can rewrite the PLV as

Ψu

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ π

−π
cos θð ÞdPθ θð Þ


 �2
+

Z π

−π
sin θð ÞdPθ θð Þ


 �2
s

: ð12Þ

Hence we have the squared PLV as

Ψ2u
R π
−π cos θð ÞdPθ θð Þ� 	2 +

R π
−π sin θð ÞdPθ θð Þ� 	2

=
R π
−π

R π
−π cos θð Þ cos ωð Þ + sin θð Þ sin ωð Þð ÞdPθ θð ÞdPω ωð Þ:

ð13Þ

The population statistic of the APCD (Eq. 16) is equivalent to the
population statistic of the squared PLV, expect for an arccosine
transformation of the dot product inside the integral. The relationship
between the APCD and the PLV implies that we can define a pairwise
statistical measure, which gives an unbiased estimate of the
population statistic of the squared PLV. We call this measure the
pairwise phase consistency (PPC) and denote it by the symbol ϒ. We
have the sample estimate of the PPC as

Y ̂ u
2

N N − 1ð Þ
XN−1

j=1

XN
k= j + 1ð Þ

f θj; θk
� �

; ð14Þ

wherein the function f computes the dot product between two unit
vectors and is defined by

f u;ωð Þu cos uð Þ cos ωð Þ + sin uð Þ sin ωð Þ: ð15Þ

The population statistic of the PPC is given by ϒ=Ψ2 (Eq. 13).
The sample estimate is bound by −1≤ϒ ̂≤1. The PPC has an

essential advantage in comparison to the PCDI: The expected value of
its estimator is equal to the population statistic of the squared value of
the resultant length (PLV). The relationship between the APCD and
the PPC is given by taking the cosine of the absolute angular distances,

Yu
Z π

−π

Z π

−π
cos d u;ωð Þð ÞdPu uð ÞdPω ωð Þ: ð16Þ

The PPC is graphically explained in Fig. 1.
The key difference between the APCD and the PPC is that for the

computation of the APCD, we determine the absolute angular
distances between relative phases, whereas for the computation of
the PPC, we determine the cosine of the absolute angular distances.
For angular differences close to 90° ( 1

2π), the angular distance and the
cosine of the angular distance are approximately linearly related,
since for these angles we have cos xð Þ≈ 1

2π − x. However, especially
Please cite this article as: Vinck, M., et al., The pairwise phase consis
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for small distances and for very large angular distances, the functions
d(φ, θ) (Eq. 9) and f (φ, θ) (Eq. 15) behave differently, since the
derivative of the cosine of the angular distances is zero for these
angular distances.

There exist distributions for which the PLV is zero, but the PCDI
is not. In other words, for these distributions there is no circular
mean direction, but the mean angular distance between relative
phases is smaller than 90°. For example, suppose we have a circular
distribution with probabilities defined by P θ = 1

2 π
� 	

=
ffiffi
2

p
2 +

ffiffi
2

p ;

P θ = 11
4 π

� 	
= 1

2 +
ffiffi
2

p and P θ = 1
4π

� 	
= 1

2 +
ffiffi
2

p for this distribution
is zero, but the PCDI is not. The APCD is given by

D =
1 � 1 � 2
2 +

ffiffiffi
2

p� �2 � 12π +

ffiffiffi
2

p
� 1 � 2 � 2

2 +
ffiffiffi
2

p� �2 � 3
4
π

=
2 + 6

ffiffiffi
2

p

2 + 4 + 2
ffiffiffi
2

p� � ffiffiffi
2

p � 1
2
πV

1
2
π

ð17Þ

On the contrary, the PPC is given by

Y =
2 � 2 � 1 �

ffiffiffiffiffi
2�

p
− 1

2

ffiffiffi
2

p� �
2 +

ffiffiffi
2

p� �2 +

ffiffiffi
2

p
�
ffiffiffi
2

p
+ 1 � 1 + 1 � 1

2 +
ffiffiffi
2

p� �2 = 0 ð18Þ

Bias and variance of the sample PPC estimator

In this paragraph, we will show that the sample estimator of the
PPC is consistent and not biased by the sample size. The expected
value of the sample PPC equals

E Y ̂
n o

= E
2

N N − 1ð Þ
XN−1

j=1

XN
k= j + 1ð Þ

d θj; θk
� �8<

:
9=
;

=
2

N N − 1ð Þ
XN−1

j=1

XN
k= j + 1ð Þ

E d θj; θk
� �n o

= Y :

ð19Þ
tency: A bias-free measure of rhythmic neuronal synchronization,
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Here, we used the property E{f (X1, X2) + f (X2, X3)}=E{ f (X1,
X2)} + E{f (X2, X3)} and the assumption that dP(θ j,θk)=dP(θ j) dP
(θk), in other words that our observations are independent. Eq. 19
shows that the expected value of the sample PPC does not depend on
the number of pairs in our sample. The pairs are of course not inde-
pendent, but this does not affect the expected value, but the variance of
our sample estimate. The variance of our sample PPC estimate is given
by

Var Y ̂
n o

= E Y ̂2
n o

− Y
2 ð20Þ

We have

E Y ̂2
n o

= E
4

N2 N−1ð Þ2
XN−1

j=1

XN
k= j + 1ð Þ

d θj; θk
� �0

@
1
A28<

:
9=
;: ð21Þ

We can decompose E{ϒ̂2} in three terms: The product of the
distance for pairs that are identical, the product of the distance for
pairs that are independent and the product for pairs in which there is
one shared observation, such that the total number M of product of
pairs (for NN3) equals

M =
N

2

 !
+

N

2

 !
N − 2ð Þ N − 3ð Þ

2
+

N

2

 !
2N − 4ð Þ

=
N

2

 !2

:

ð22Þ

The variance of the PPC estimate is thus given by

Var Y ̂
n o

=
2

N N − 1ð Þ
Z π

−π

Z π

−π
f ω;ϑð Þ2dPϑ ϑð ÞdPω ωð Þ

+
6− 4N

N N − 1ð ÞY
2

+
4N − 8
N N − 1ð Þ

Z Z Z π

−π
f u;ϑð Þ2f u;ωð ÞdP uð ÞdP ϑð ÞdP ωð Þ

ð23Þ

and the function f is defined by Eq. 9. This means that the variance of
the PPC estimate approaches zero asymptotically,

lim
NY∞

Var Y ̂
n o

= 0: ð24Þ

The asymptote of our estimate ̂ϒis thus equal to

lim
NY∞

Y ̂ = Y : ð25Þ

This demonstrates that ϒ̂ is a consistent and unbiased estimator of
ϒ. Note that Eqs. 19–25 applies to the PCDI as well.

Simulations based on artificial data

To compare the variance and mean squared error between the
squared PLV and the PPC and to validate our analytical findings by
means of numerical simulations, we created artificial samples drawn
from a von Mises distribution, according to (Best and Fisher, 1979).
For every sample drawn, we computed the PLV, the squared PLV, the
PCDI and the PPC. We repeated this procedure 106 times to obtain
estimates of the variance and the mean of the PLV, the squared PLV,
the PCDI and the PPC. We repeated this procedure for a large range of
the dispersion parameter K from the von Mises distribution. The
population PLV and squared PLV values are respectively given by

Ψ =
I1 Kð Þ
I0 Kð Þ ; ð26Þ
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andΨ2, wherein I1(K) and I0(K) are modified Bessel functions of order
zero and one, and K is the dispersion parameter from the von Mises
distribution (Fisher, 1993). The MSE of the sample estimates is
defined as

MSEu
1
M

XM
m=1

Ŝ m−S
� �2

; ð27Þ

wherein m is the index for sample number, M is the total number
of samples that we draw from the population, and Ŝ is the sample
estimate of the population statistic S (either PLV or PPC). All
simulations were performed in C using the gcc compiler.

Actual spike–LFP data

Three adult male Wistar rats (Harlan CPB, Horst, the Netherlands),
weighing 370–450 g at the time of surgery, served as subjects in these
experiments. Prior to training and surgery, the rats were housed two
to a cage on a reversed light/dark cycle (lights off: 7AM, lights on:
7PM) with ad libitum food and water. After surgery, animals were
housed individually in a transparent cage (40×40×40 cm), with
other rats present in the climate controlled colony room. During
training and recording, rats were maintained on food restriction,
with 5–15 g of food available from N1

2 h after training, depending
on the amount of reward collected in the session, amounting to
90% free-feeding intake. All experiments were conducted according
to the National Guidelines on Animal Experiments and with approval
of the Animal Experimentation Committee of the University of
Amsterdam.

Odor discrimination training was conducted in an operant
chamber (56×30×40 cm L W H). The chamber was equipped with
an odor sampling port and trial light on a front panel and a tray for
delivery of fluids placed at the opposing wall. The front panel was
slanted at 45 (with respect to ground level) above the odor sampling
port to allow unhindered nose poking into the odor port by implanted
animals. Entries by the animals into the odor port, fluid well and
licking into the well were recorded by photobeam interruptions.
During recording sessions, behavioral events were synchronized with
electrophysiological data acquisition running on a separate computer.
Odors were delivered via separate glass vials and tubing to avoid
mixing. Upon entering the application system, they were mixed 1:1
with clean air and released into the compartment directly behind the
odor port by way of computer-controlled valves. Likewise, quinine
and sucrose solutions were delivered to the fluid well via separate
fluid lines and electronically controlled by valves. Training and task
performance were devoid of human interference. The animals were
trained on a two-odor go/no-go discrimination task. After habituation
to the chamber and pre-training, rats were confronted with odor
discrimination problems. Each session, one novel odor was associated
with reward (100 μl of 15% sucrose solution), and a second novel odor
with an aversive outcome (100 μl of 0.01M quinine solution). Training
sessions consisted of blocks of 5 + 5 pseudo-randomly ordered
positive and negative odor trials. When a trial light was illuminated,
rats could initiate a trial by poking their snout in the odor sampling
port. After a 500-ms delay, air flow through the odor sampling port
was switched from clean air to the selected clean air/odorant mixture.
A correct nose poke in the odor port (wait for odor 500 ms,
constituting a pre-stimulus delay, and sample odor for at least
750ms)was indicated by the trial light turning off. After sampling, the
rats could move over to the fluid well, into which they were required
to make a nose poke for N100 ms before the outcome (sucrose or
quinine solution) was presented. We refer to the invariant 1000-ms
delay period as the anticipatory period. This anticipation period
allows sampling of neural activity during thewaiting period that is not
confounded by whole-body movement. When the rats left the fluid
well, an inter-trial interval (ITI) of 10–15 s was observed before the
tency: A bias-free measure of rhythmic neuronal synchronization,
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next trial started. A correct rejection was scored if the rat refrained
from entering the reinforcement tray for N5 s following sampling of
the negative odor. Responses during the ITI had no programmed
consequences, while prematurely ended responses (i.e., short pokes)
during the odor sampling or waiting period resulted in immediate
termination of the current trial and the start of a new trial.

Rats were implanted after they reached behavioral criterion, viz.
scoring N85% hits and correct rejections over a moving block of 20
trials. Animals were anesthetized by i.m. injection of 0.08 ml/100 g
Hypnorm (0.2 mg/ml fentanyl, 10 mg/ml fluanison; VetaPharma Ltd.,
Leeds, UK), followed by 0.04 ml/100 g. Dormicum (5 mg/ml
midazolam; Roche Nederland B.V., Woerden, the Netherlands) s.c.
and mounted in a stereotact. Body temperature was maintained
between 35 and 36 °C. A microdrive, holding 14 individually
moveable electrode drivers, was chronically implanted onto a
craniotomy (diameter: 2 mm) in the left hemisphere dorsal to the
OFC at 3.4–3.6 mm anterior and 3.0–3.2 mm lateral to bregma. The
drivers were loaded with 12 tetrodes and 2 reference electrodes.
Using dental cement, the drive was anchored to six stainless steel
screws, one of which was positioned in the left parietal bone and
served as ground. Immediately after surgery, all tetrodes and
reference electrodes were advanced 0.8 mm into the brain. Next,
the animal was allowed to recover for 7 days with ad libitum food
and water, during which the 12 recording tetrodes were advanced in
daily steps to the upper border of the OFC according to a standardized
rat brain atlas (Paxinos and Watson, 1982). The reference electrodes
were lowered to a depth of 1.2–2.0 mm and adjusted to minimize
spiking activity on the reference channel. After surgery, saline was
injected s.c. (2 ml per flank), and pain relief was provided by 0.1 ml/
100 g pre-surgical weight of a 10% Finadyne (flunixin meglumine
50 mg/ml; Schering-Plough, Brussels, Belgium) solution adminis-
tered in saline s.c.

Following surgery, animals were retrained on the familiar odor
pair with which initial training took place until performance was back
at criterion level. Recording of neural activity started in the
subsequent session. On each recording session, rats were confronted
with a new odor pair. Using tetrodes, neural activitywas recorded by a
64-channel Cheetah setup (Neuralynx, Bozeman MT). Signals were
passed through a unity-gain pre-amplifier headstage, a 72-channel
commutator (Dragonfly, Ridgeley, West Virginia, USA), amplified
5000 and bandpass filtered between 600 and 6000 Hz for spike
recordings. If a signal on any of the leads of a tetrode crossed a pre-set
threshold, activity on all four leads was sampled at 32 kHz for 1 ms
and stored for off-line analysis. Local field potentials recorded on all
tetrodes were amplified 1000 , continuously sampled at 1874 Hz, and
bandpass filtered between 1 and 475 Hz. Events in the behavioral task
were co-registered and time-stamped by the Cheetah system. Spike
trains were sorted to isolate single units using a semi-automated
clustering algorithm (BubbleClust) followed by manual refinement
using MClust. Automated and manual clustering of spikes was done
using the waveform peak amplitude, area, squared amplitude integral
and the first three principal components. Clusters were accepted as
single units when having no more than 0.1% of inter-spike intervals
shorter than 2 ms.

All data analysis was performed in MATLAB, with additional use of
the Fieldtrip Toolbox and custom-made Mex-files, using the gcc
compiler. For every neuron, we computed the spike–LFP phase for
every spike by Fast Fourier Transforming an LFP segment of length T
samples,

Xj fð Þ =
XT
t=1

w tð Þxj tð Þexp i2πftð Þ: ð28Þ

Here, w(t) is a Hanning window, xj(t) is the unfiltered LFP
segment that is centered around the spike, f is the frequency, and j is
an index for spike number.
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Results

Simulations based on artificial data

We first tested whether the PPC (pairwise phase consistency)
indeed has a bias-free sample estimator by computing the PPC for
samples drawn from a von Mises distribution with different sample
sizes and levels of dispersion. Fig. 3A shows that the PPC does not
have any bias a function of the sample size, as we predicted
analytically by Eq. 19. As predicted from Eqs. 13 and 16, we observed
identical population values for the PPC and the squared PLV (Fig. 3B).
In addition, for samples drawn from a von Mises distribution, we
obtained a near linear relationship between the population squared
PLV (phase-locking value) and the population PCDI (pairwise circular
distance index) for a large range of the population PLV (PLVb0.9)
(Fig. 3B). We can approximate the population squared PLV with great
accuracy by Ψ2=βD⋆ wherein β=1.21 and Ψ and D⋆ are defined
respectively by Eq. 2 and Eq. 11.

Typically, a reduction in bias for some estimator comes at the
expense of an increase in variance and MSE (mean squared error).
Thus, we were interested in comparing the MSE and variance of the
PPC with the squared PLV. For a given value of the von Mises
dispersion parameter K, the population statistics of both statistics are
known and derived from Eq. 26. Fig. 3C compares the log ratio of the
MSE of the PPC to theMSE of the squared PLV. A value of zero indicates
that the MSE is the same for both statistics. Values lower than zero
indicate thatMSE is smaller for the PPC than for squared PLV. For small
values of the population PLV (0–0.3), where the bias and variance
problem is most severe, the MSE of the PPC compares favorably to the
MSE of the squared PLV. For higher values of the PLV (0.4–1), the MSE
of the PPC is only slightly greater than the MSE of squared PLV. Fig. 3D
displays the difference in variance of the squared PLV with the
variance of the PPC. A value of zero indicates that the variance is equal,
whereas a higher value than zero indicates that the variance of the
PPC is relatively higher. For small samples (Nb10), the PPC estimate
suffers from higher variance than the squared PLV estimate, showing
that there is some trade-off between bias and variance. It should be
noted however, that for small sample sizes (e.g., N=2), the PPC has a
dynamic range that still extends from 0 to 1, whereas the squared PLV
has a much smaller dynamic range (the lower bound is pushed
towards 1 because of the bias). Given a fixed variance, we are less
sensitive in detecting differences in the population statistic if the
dynamic range of the sample estimate is smaller.

Analysis of neuronal data

We first verified that our technique indeed provides unbiased
results for actual neuronal data. For that purpose, we selected cells
from which we recorded more than 200 spikes during the period in
which the rat anticipated sucrose delivery at the fluid well, in order to
obtain a relatively smooth circular distribution of spike theta (6 Hz)
phases. The sample of all recorded spikes now functioned as the
population probability distribution. Then, for every selected neuron,
we drew small-size samples of spike phases from the distribution of
all recorded spike phases. Samples were drawn without replacement.
Draws were repeated 50,000 times to obtain an estimate of the
expected value of the sample estimates. Fig. 4A shows that there was a
negative relationship between the expected value of the PLV
estimates and the sample size, similar to the results of the numerical
simulations shown in Fig. 2A. As predicted (Fig. 3A and Eq. 19), no
systematic bias was observed when using the PPC (Fig. 4B). This
means that for the expected value of our PPC sample estimate, it
would not have made a difference whether we observed 200 or 10
spikes from a given neuron (of course, for the variance it would).

Next, we computed the PLV and PPC for every neuron using all
available spikes and compared the PLV (Fig. 4C) and PPC (Fig. 4D)
tency: A bias-free measure of rhythmic neuronal synchronization,
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across the neuronal population. For cells with small sample sizes (few
spikes), we observedmuch higher PLVs and a higher variance. Figs. 4C
and D demonstrate an important downside of the FSPLVwhen applied
to spike data, namely: The number of spikes we choose to compute
the FS-PLVwill lead to a selection of only a subset of neurons that have
a higher number of spikes (and likely higher firing rates) than on
average, for example, interneurons or neurons that increase their
firing rate during the period under consideration. Conclusions drawn
from analyses on this subset of neurons might not generalize to the
population of all cells, especially since neurons with a large number of
spikes might have different firing rate correlates.

As a demonstration, we then examined the relationship between
task conditions (rat behavior) and the PPC spectra. We investigated
Fig. 2. Bias of phase-locking value (PLV) estimate. (A) PLV estimate versus sample size.
PLV estimate is most strongly biased for small PLV values and small sample sizes.
Samples were drawn from a von Mises distribution. Different lines correspond to
different values of the concentration parameter of the von Mises distribution. Line with
lowest PLV corresponds to the uniform distribution. (B) Sample-size bias of PLV
estimate depends on circular distribution type. PLV estimate (on logarithmic scale)
versus sample size (in logarithmic scale). Dotted line: PLV estimate for uniform
distribution. Solid line: PLV estimate for bimodal distribution (mixture of orthogonal
dirac delta distributions). Both distributions have a population PLV of 0. However, the
PLV estimate for the bimodal distribution is a non-differentiable function of sample size
and converges more rapidly to its population parameter. Bias of phase-locking value
(PLV) estimate. (A) PLV estimate versus sample size. PLV estimate is most strongly
biased for small PLV values and small sample sizes. Samples were drawn from a von
Mises distribution. Different lines correspond to different values of the concentration
parameter of the von Mises distribution. Line with lowest PLV corresponds to the
uniform distribution. (B) Sample-size bias of PLV estimate depends on circular
distribution type. PLV estimate (on logarithmic scale) versus sample size (in
logarithmic scale). Dotted line: PLV estimate for uniform distribution. Solid line: PLV
estimate for bimodal distribution (mixture of orthogonal dirac delta distributions).
Both distributions have a population PLV of 0. However, the PLV estimate for the
bimodal distribution is a non-differentiable function of sample size and converges more
rapidly to its population parameter.
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the structure of PPC spectra for different inclusion criteria for our cells
(i.e., the minimal number of spikes that was required to include a
cell). Figs. 5A–D show the PPC spectra for the sucrose waiting
(positive outcome; 1000 ms before fluid delivery) and quinine
waiting (negative outcome; 1000 ms before fluid delivery) task
periods. During this period, orbitofrontal cortex neurons are selective
by means of their firing rate for the upcoming task outcome, based on
a cue that was received a few seconds before (one of two odors). Every
plot represents a different number of minimal spikes that had to be
recorded from a neuron beforewe included it (2, 10, 30, 50). As Fig. 4D
shows, when the minimal number of spikes is small, neurons are
included whose individual sample estimates have a high variance
(especially when they are weakly locked), which might obscure
differences between task conditions. Figs. 5A–D show that theta-band
spike–LFP phase-locking is enhanced during the sucrose waiting
period relative to other task periods. Even when all cells are included,
regardless of their sample size, we obtain similar results, showing that
the difference in theta-band rhythmic synchronization between the
sucrose and the quinine waiting period holds at the level of the
complete sample of recorded cells, not only for the sample of cells
with a relative high firing rate. Second, we show that across a large
range of frequencies (2 to 10–15 Hz), rhythmic synchronization is
selectively enhanced during the sucrose waiting period versus the
quinine waiting period.

Discussion

We investigated the problem of how to measure phase consis-
tency, i.e., whether signals that are generated by two separate sources
display a consistent phase-relationship in a particular frequency-
band. The sample estimators of the PLV (phase-locking value) and the
coherence measure are strongly biased by the number of observa-
tions (trials or spikes) in the sample. This bias is difficult to control,
because the way the bias behaves depends on the circular distribution
(for example, unimodal versus bimodal). We have introduced the
pairwise phase consistency (PPC) as a new measure of phase
consistency. We demonstrated analytically, by means of simulations
and by application on actual neuronal data, that the sample estimate
of the PPC is an unbiased and consistent estimator of the population
PPC. These properties, unbiasedness and consistency, hold indepen-
dently of the circular distribution of the relative phases. We
demonstrated, both analytically and by means of simulation, that
the population statistic of the PPC is identical to the population
statistic of the squared PLV. This means that we can interpret the PPC
both in terms of (the cosine of) angular distances and in terms of the
population value of the squared PLV. Furthermore, we showed that
the MSE (mean square error) of the PPC estimate compared favorably
to that of the squared PLV for low values of the PLV (0–0.3), where
the problems of variance and bias are most severe. Finally, we
demonstrated the use of the PPC in actual neuronal data. Thus, the
PPC and the squared PLV have the same population statistic, but the
key advantage of the PPC is that it has a bias-free sample estimator. In
addition, we introduced the pairwise circular distance index (PCDI),
which computes the absolute angular distances between relative
phases. Although the PCDI has an unbiased and consistent estimator,
it is more difficult to interpret the PCDI than it is to interpret the PPC:
Although for a large range of dispersion of relative phases (Rb0.9),
we demonstrated by numerical simulations that there is a linear
relationship between the PCDI and the population value of the
squared PLV for a von Mises distribution, the relationship between
the PCDI and the population value of the (squared) PLV remains to be
investigated for other probability distributions, for example, proba-
bility distributions that are not unimodal. For a uniform distribution,
the PCDI and PLV are both zero, but we have shown that for example
for a trimodal probability distribution, the PLV can be zero, while the
PCDI is not.
tency: A bias-free measure of rhythmic neuronal synchronization,
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Fig. 3. Comparison of PPC (pairwise phase consistency) to phase-locking value (PLV). (A) PPC estimate versus sample size. PPC estimate does not have any bias. Samples were drawn
from vonMises distribution. Corresponding population PLV is given in legends of (C) Comparison of PPC (pairwise phase consistency) to phase-locking value (PLV). (A) PPC estimate
versus sample size. PPC estimate does not have any bias. Samples were drawn from vonMises distribution. Corresponding population PLV is given in legends of (C). Lowest green line
corresponds to uniform distribution. (B) Relationship squared PLV, PPC and PCDI. The population value of the PPC is identical to the population value of the squared PLV. For PLV
values smaller than 0.9, a near linear relationship is observed between the PCDI and the squared PLV (regression weight for PLV values smaller than 0.9 is 1.21). (C) Comparison of
MSE (mean squared error) for PLV and PPC. Y-axis: ratio of MSE for PPC to MSE for PLV (log transformed). X-axis: number of observations. Value of zero indicates that MSE is the
same for both statistics. Values lower than zero indicate that MSE is smaller for PPC than for squared PLV. For low values of the PLV (0–0.3), we obtain a smaller MSE for the PPC. For
higher values of the PLV, the MSE of PPC is only slightly greater than the MSE of the squared PLV. Color coding indicates different PLV (resultant length) values. (D) Comparison of
variance for squared PLV with variance of PPC. A value of zero indicates equal variance. Variance of squared PLV and PPC are comparable for sample sizes larger than 10. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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The PPC has several advantages to the coherence and PLV in
several respects. A main advantage is that the PPC's sample estimate
has no bias. Experimentally, this is especially an advantage when the
sample consists of spike phases from sparsely firing neurons, or when
the number of behavioral trials depends on the response of the
behavioral subject and not on the experimenter. The unbiasedness
gives several advantages. First, in neuroscience we often average
results across subjects or neurons, because individual measurements
are often relatively noisy. When there is a systematic bias across
subjects or neurons, then this bias will appear in the group average as
well. However, when the error of the sample estimates (relative to the
population statistic) is only determined by the variance of the sample
estimates, thenwe can squeeze this variance out of our group average,
since it is expected to be largely independent across subjects or
neurons. Unbiasedness ensures that our data will not have a
systematic tendency for false positives. At the same time, unbiased-
ness increases the sensitivity of our statistical comparisons. A
difference in sample size, which causes the PLV to go in the opposite
direction of a hypothesized effect, will not affect the PPC. Second,
unbiasedness facilitates the comparison of outcomes across different
experiments. Such a comparison is currently complicated because of
the sample-size bias. Depending on the behavioral task and recording
area, large differences in the number of recorded spikes per neuron or
Please cite this article as: Vinck, M., et al., The pairwise phase consis
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behavioral trials can exist. The comparison of the strength of rhythmic
synchronization across areas and stimulus and behavioral condition
takes place mostly across experiments, and the sample size might be
very different between experiments. Thus, we expect that the use of
the PPC can give rise to interesting meta-analyses across experiments.
Third, some research questions are explicitly concerned with the
relationship between firing rates and rhythmic synchronization: a
bias-free measure of rhythmic synchronization is very important in
these cases. Another main advantage of the PPC is that the PPC has a
smaller MSE (mean squared error) than the PLV. This means that the
reduction in bias does not come at the expense of an even larger
variance. Despite these advantages of the PPC, it should be
emphasized that the PLV (and the coherence) remain important
descriptive measures of the data. Although the PPC provides an
unbiased estimate of the population value of the squared PLV, it does
not for the PLV itself. The current paper did not investigate under
what conditions the PLV can be reliably estimated from the square
root of the PPC. Since the sample estimator of the PPC can attain
negative values, this is at least impossible for combinations of lower
values of the (population) PLV and PPC and small sample sizes.

As already argued in themethods, the PPC also compares favorably
to the FSPLV. First, the FSPLV is not an unbiased measure, in the sense
that different types of circular distributions (e.g., unimodal vs.
tency: A bias-free measure of rhythmic neuronal synchronization,
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Fig. 4. Application of pairwise phase consistency (PPC) to neuronal data. (A) Bias of PLV (phase-locking value) as a function of spike count for individual cells. Theta-band spike–LFP
synchronization was investigated while rats anticipated reward at a fluid well. For neurons with more than 200 spikes during reward anticipation period, we drew samples of
different sizes from the distribution of all recorded spike theta (6 Hz) phases. 10 PLV showed a strong bias as a function of sample size. Every line corresponds to a single unit. Color
scale indicates different levels of phase consistency. (B) Bias of PPC as a function of number of spikes for individual cells. Same conventions as in (A), expect that here the PPC is
plotted. PPC showed no bias as a function of sample size. (C) Distribution of squared PLVs across neuronal population. Each dot represents a neuron. All recorded spikes were used to
calculate the squared PLV. Neurons with few recorded spikes demonstrated higher squared PLV. (D) Distribution of PPC across neuronal population. Same conventions as in (C),
except that here the PPC is plotted. The strong bias of the PLV (C) disappeared for the PPC. Application of pairwise phase consistency (PPC) to neuronal data. (A) Bias of PLV (phase-
locking value) as a function of spike count for individual cells. Theta-band spike–LFP synchronization was investigated while rats anticipated reward at a fluid well. For neurons with
more than 200 spikes during reward anticipation period, we drew samples of different sizes from the distribution of all recorded spike theta (6 Hz) phases. 10 PLV showed a strong
bias as a function of sample size. Every line corresponds to a single unit. Color scale indicates different levels of phase consistency. (B) Bias of PPC as a function of number of spikes for
individual cells. Same conventions as in (A), expect that here the PPC is plotted. PPC showed no bias as a function of sample size. (C) Distribution of squared PLVs across neuronal
population. Each dot represents a neuron. All recorded spikes were used to calculate the squared PLV. Neurons with few recorded spikes demonstrated higher squared PLV. (D)
Distribution of PPC across neuronal population. Same conventions as in (C), except that here the PPC is plotted. The strong bias of the PLV (C) disappeared for the PPC. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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bimodal) can have a different dependence of the sample FSPLV on
sample size. Second, to use the FSPLV, an arbitrary value has to be
chosen (the fixed number of observations we use per sample).
Different choices of this value might result in different conclusions.
Moreover, if we choose different parameter values of F across
different experiments, it will be hard to compare the degree of
phase consistency across experiments, because we are essentially
using a different population statistic in every experiment. Finally,
some subjects or neurons might not have enough trials or spikes to
compute the FSPLV, so that results might not generalize to the whole
population. For the PPC, all subjects and neurons can contribute to the
group average. Third, the PPC uses all available data, whereas for the
FSPLV, it is typically not practical to use all available data in the same
way, because computing all possible bootstraps is computationally
often not feasible. That means that some observations might appear
more often in the bootstraps than other samples and that some
combinations of observations are not taken into account. This will lead
to a higher variance of our sample estimates and also a variance of the
outcomes from run to run. The PPC leads to exactly the same outcome
every time we compute it.
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The main disadvantage of the PPC is that it is computationally
inefficient (order N larger) in comparison to the PLV and the
coherence. However, N2 computations are still practically feasible,
which is demonstrated by the fact that we could easily compute the
PPC across 525 neurons. Another potential disadvantage is that
negative values are possible when using the normalized version of the
PPC (whose expected value runs from 0 to 1). This is a consequence of
the unbiasedness of the PPC. In general, if a statistic is bounded from
below by zero, then its expected value can only be zero then the
variance is zero. On the contrary, the PLV estimate has the highest
variance when its population value is zero. Percentages of change can
only be computed when all values are larger than zero, so we might
not be able to compute percentages in all cases. On the other hand, the
percentage of change that can be obtained (when the values are
positive) will not be influenced any more by the sample size (thus it
will be larger). For the PLV and coherence, we will typically obtain
smaller effect sizes, because small sample sizes effectively decrease
the dynamic range of the statistic. Often, it is not even clear what the
dynamic range of reported PLV or coherence values is. The PPC has the
advantage that it has the same dynamic range, regardless of the
tency: A bias-free measure of rhythmic neuronal synchronization,
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Fig. 5. Application of pairwise phase consistency (PPC) to neuronal data. (A) We compared rhythmic spike–LFP synchronization while rats anticipated either sucrose (correct Go
response) or quinine (incorrect Go response). Green solid line: mean PPC across all recorded neurons for sucrose anticipation. Red solid line: mean PPC across all recorded neurons for
quinine anticipation. Black solid line: median difference of PPC between sucrose and quinine anticipation. Black squares: significant frequencies (P Application of pairwise phase
consistency (PPC) to neuronal data. (A) We compared rhythmic spike–LFP synchronization while rats anticipated either sucrose (correct Go response) or quinine (incorrect Go
response). Green solid line: mean PPC across all recorded neurons for sucrose anticipation. Red solid line: mean PPC across all recorded neurons for quinine anticipation. Black solid
line: median difference of PPC between sucrose and quinine anticipation. Black squares: significant frequencies (Pb0.05, Rank-Wilcoxon). Shades: standard error of the mean. All
neurons (N=525) were included to compute averages. Even when including all cells, including those with high variance of the PPC estimate, the difference between the sucrose and
quinine anticipation condition is already apparent for a broad range of low frequencies. (B) Same as in (A), but now including all neuronswithmore than 10 recorded spikes. Note how
the difference between quinine and sucrose anticipation becomes more visible because we removed units with very high variance (because of low number of recorded spikes). For
quinine, a complete absence of rhythmic synchronization at 15Hz is observed. (C) Same as in (A) and (B), but now for neuronswithmore than 30 recorded spikes. (D) Same as in (A) to
(C), but now for neuronswithmore than 50 recorded spikes. (For interpretation of the references to colour in thisfigure legend, the reader is referred to theweb version of this article.)
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number of samples we take. As a rather philosophical remark, we
would like to point out that a percentage increase in the degree of
phase consistency (e.g., a 100% change from 0.05 to 0.1) can as well be
interpreted as a much smaller decrease in the amount of randomness
of our spikes if we had let our scale of randomness run from 0 to 1
instead of 1 to 0 (e.g., a 5% decrease from 0.95 to 0.9).

Finally, we demonstrated the use of the PPC in neuronal data.
Spiking activity from orbitofrontal neurons was recorded from well
isolated sparsely firing neurons, while the rat engaged in a two-odour
discrimination task. We demonstrated that the PLV was influenced by
the firing rate, while the PPC was not. Furthermore, we demonstrated
the use of the PPC by analyzing group differences in spike–LFP
rhythmic synchronization during different task conditions. We
showed that for a large range of low frequencies, rhythmic
synchronization was selectively enhanced during anticipation of
sucrose delivery versus anticipation of quinine delivery.

To conclude, we provide a measure of rhythmic synchronization,
which is easily computed, has an unbiased and consistent estimator,
an intuitive interpretation and is straightforwardly related to existing
measures of rhythmic synchronization. We expect that, for many
experimental questions, our methodwill provide increased sensitivity
for true positives and a decreased sensitivity for false negatives in
Please cite this article as: Vinck, M., et al., The pairwise phase consis
NeuroImage (2010), doi:10.1016/j.neuroimage.2010.01.073
comparison to existing methods. The pairwise phase consistency has
great applicability when we want to measure rhythmic synchroniza-
tion for both EEG–EEG, MEG–MEG, spike–LFP, and spike–spike pairs
but might very well be applicable in the biomedical sciences in
general and other sciences (e.g., physics or geosciences) in which
circular statistics play an important role.
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