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Abstract
When making intertemporal decisions, i.e., decisions between outcomes occurring at different instants in time, humans and animals prefer rewards

with short-term availability over rewards that become available in the long run. Discounted utility theory (DUT) is an influential normative model for

intertemporal decisions that attempts to capture preference over time. It prescribes which is the best decision to take with respect to consistent, coherent

and optimal choice. Over the last few decades, DUT’s descriptive validity has been critically challenged. Empirical studies found systematic violations

of several of DUT’s assumptions, including time-consistency of preferences, stationarity, constant discounting and utility maximisation. To account for

theseanomalies,alternativemodelshavebeendevisedinvariousacademicdisciplines, includingeconomics,psychology,biology,philosophy,andmost

lately, cognitive neuroscience. This article reviews the most recent literature on the behavioural and neural processes underlying intertemporal choices,

and elucidates to which extent these findings can be used to explain violations of DUT’s assumptions. In the first three sections, DUT is introduced, and

behavioural anomalies are discussed. The fourth part focuses on the neuroscience of intertemporal choice, including its functional neuroanatomy,

attempts to find a discounted value signal in the brain, and recent efforts to identify neural mechanisms producing time-inconsistencies. In the last

section, the computational literature on neural learning mechanisms is reviewed. Then, a new, biologically plausible computational model of

intertemporal choice is proposed that is able to explain many of the behavioural anomalies. The implications of these results help to understand why

humansandanimals frequentlydecide irrationallyand to their long-termeconomicdisadvantage, and whichneuralmechanisms underlysuchdecisions.
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1. Time and probability

1.1. Decisions under risk and intertemporal decisions

Your door bell rings, and when you open it, an insurance

salesman smiles into your face. He wants to sell you two

different insurance certificates. The first certificate is a fire

insurance. It would cost you only $10 per month, and would

cover all the damage to your house in the unlikely, but

shattering case it was destroyed by a terrible fire. The second

policy is a pension fund. The premium is $100 each month, but

you would receive a guaranteed life-long retirement pay of at

least $700 per month once you reach the age of 65.

Those two examples nicely illustrate two problems in choice

theory that keep decision researchers from many different

scientific disciplines busy, including psychology, biology,

neuroscience, economics, law, politics and philosophy: deci-

sion-making under risk and intertemporal decision-making.

When you deliberate whether to buy or reject the fire policy offer,

you will try to estimate the probability that your house could

indeed be destroyed by a fire, and trade off this small risk with the

devastating problem you would be facing if it actually happened.

You are, hence, making a decision under risk, i.e., you are trying

to decide between probabilistic outcomes.1 The second type of
1 As always, this everyday example may be somewhat misleading since it

may only inappropriately capture the concept of decisions under risk. Although

decisions under risk obviously entail choices between probabilistic outcomes,

many researchers actually use the term ‘risk’ strictly in the sense of outcome

variance in a multi-choice situation, i.e., a certain outcome has a variance of 0, a

risky option has an outcome with a variance>0 (e.g., Kacelnik, 1997; Kacelnik

and Bateson, 1996, 1997).
decision-making, intertemporal choices, is illustrated by the

pension fund example: when thinking about investing into

the retirement provision, you will face little risk or uncertainty, as

the insurance company is reliable and will pay out the pension

when you reach the age. However, your decision would involve

calculating and trading-off choice outcomes that would be

realised at different points in time, i.e., you would have to invest

money now to obtain benefits that are yet to come. On the other

hand, if you decided against the retirement provision, you could

save the monthly $100 premium. This would put you in a better

financial position to treat yourself to things that you fancy now,

for example an expensive dinner each month. Hence, your choice

depends on whether you are willing to forgo short-term benefits

in order to invest into an option that is probably more reasonable

in the long run. Accordingly, intertemporal decision making can

be defined as choices between outcomes that occur at different

points in time.

This review will focus on the neurobiology underlying the

second class of choices, intertemporal decisions, although the

first class, decisions under risk, will be mentioned frequently

throughout this article as well. For a more detailed overview

about the psychology and neurobiology of decisions under risk,

refer to the existing literature (for example, Von Neumann and

Morgenstern, 1944; Friedman and Savage, 1948, 1952;

Kahneman and Tversky, 1979; Platt and Glimcher, 1999;

Montague and Berns, 2002; Fiorillo et al., 2003; Barraclough

et al., 2004; Dorris and Glimcher, 2004; Glimcher, 2004;

Glimcher and Rustichini, 2004; McClure et al., 2004; Schultz,

2004; Hsu et al., 2005; Knutson et al., 2005; McCoy and Platt,

2005; Tobler et al., 2005; Trepel et al., 2005; Sanfey et al.,

2006).



2 The term ‘utility’ is widely used in economics and can be understood as a

measure of relative satisfaction or gratification. Normally, choice models in

economics do not exclusively refer to the maximisation of monetary gains, but

also refer to more abstract benefits, such as obtaining pleasure from engaging in

a favourite recreational activity, or enjoying one’s favourite food.
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1.2. Probabilistic and dated outcomes

The conflict in the introductory example about whether or

not to invest into a pension fund entails the decision between

dated outcomes. In general, a substantial body of evidence

suggests that, provided the costs for all options are identical, the

preference for an immediate or a temporally remote outcome is

a function of the value of the respective outcomes and their

delays, i.e., the time until they can be realised (McDiarmid and

Rilling, 1965; Rachlin and Green, 1972; Ainslie, 1975; Mazur,

1984, 1987, 1988; Grossbard and Mazur, 1986; Logue, 1988;

Benzion et al., 1989; Green et al., 1994, 1997; Evenden and

Ryan, 1996; Evenden, 1999; Frederick et al., 2002; Reynolds

et al., 2002; Kalenscher et al., 2005b, 2006a). For example a

given reward, delivered after a long delay, is less attractive than

the same reward delivered after a short delay. The process of

systematically devaluating outcomes over time is called

temporal discounting.

Why do we discount the future? Take the introductory

scenario: obviously, you may decide against the pension fund

because you do not want to wait several decades to receive the

pay-out. It is equally possible, though, that you may reject the

pension fund because you are uncertain whether you’ll ever

reach the pension age, or because you have doubts about the

financial integrity of the insurance company, despite its good

reputation. In this case, you would treat the intertemporal

decision as a choice between uncertain, and not between

delayed outcomes. Accordingly, many researchers implicitly

or openly presumed that delay in intertemporal decision-

making affects choice behaviour in a similar way as

probability does in decision-making under risk (Mischel

and Grusec, 1967; Kagel et al., 1986; Benzion et al., 1989;

Prelec and Loewenstein, 1991; Rachlin et al., 1991; Keren and

Roelofsma, 1995; Kacelnik and Bateson, 1996; Green and

Myerson, 1996, 2004; Kacelnik, 1997; Sozou, 1998;

Frederick et al., 2002; Yi et al., 2006). In other words,

humans and other animals may equate temporal distance with

uncertainty: a temporally proximal reward may be preferred

over a temporally distant reward in the same way as a likely

reward is preferred over an unlikely reward, since delayed

benefits may be lost during waiting time, are less likely to be

realised, and cannot be put to use until they are realised. Some

authors have turned this logic around (Rachlin et al., 1986;

Mazur, 1989; Hayden and Platt, 2007) and argued that a

probabilistic reward in a multi-choice situation may be

construed as a certain reward with a variable delay, since

subjects will, almost with full certainty, receive the

probabilistic reward eventually if they consistently stick with

it: if not on the current trial, then on a future trial. Hence,

probabilistic and delayed rewards may be cognitively treated

in an identical fashion, and may therefore recruit similar

neural mechanisms. However, despite some support for the

theories of shared cognitive and neural mechanisms (Mobini

et al., 2002; Hayden and Platt, 2007), behavioural results

(Rachlin et al., 1986, 1991; Snyderman, 1987; Mazur, 1989)

as well as evidence from lesion and psychopharmacological

studies (Mobini et al., 2000; Cardinal and Howes, 2005;
Acheson et al., 2006) are inconsistent and generally point

more towards a dissociation of mechanisms.

2. Rational intertemporal decisions

2.1. (Ir)rational decisions

A clear-cut definition of rationality that is accepted across all

academic disciplines is difficult to find (cf. Kacelnik, 2006). In

economics, rationality can be defined as internal consistency

with manifest preference ordering. Normative models of

rational decision-making, i.e., models prescribing which is

the best decision to take with respect to consistent, coherent and

optimal choice, are concerned with how people’s overt

preferences can be transformed into internal value relations

and vice versa. These models contain a list of axioms that must

be met to allow this transformation (see Section 2.2 for details).

An ideal, rational decision maker should obey these axioms.

Hence, this definition of rationality implies conformity with a

well-defined normative model. In this sense, any deviation from

the normative ideal would be classified as ‘irrational’. To

understand irrational behaviour, it is therefore important to

understand why people frequently exhibit preferences that

deviate from this normative ideal. The rationality definition in

economics is broadly in harmony with some philosophical

theories that conceptualise ‘rationality’ in the sense of veracity

or conformity with one’s own internal moral, ethical, social and

economic value system (Raz, 1999). Most rational choice

models have in common that they presume a motivation for

maximisation of some currency under given constraints, for

example, the maximisation of energy intake as a proxy for

Darwinian fitness (in biology), or maximisation of utility (in

economics).2 Throughout this review, we will use the term

‘rational’ in the sense of conformity to a normative model of

choice.

2.2. Expected utility theory as a normative framework for

decision-making under risk

Before moving on to normative models of intertemporal

decisions, it is necessary to briefly outline one of the most

influential normative frameworks of decisions under risk,

called expected utility theory (EUT). Utility theories in general,

both for the domain of time and risk, make basic assumptions

(axioms) about the elements of the decision space and the

preference relations of the decision maker with respect to these

elements. From these axioms the theories deduce statements

about how the preference relations, as observed from the actual

choices, can be transformed into utility relations (numbers

indicating the subjective values of the commodities). Only if an
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agent’s preference relation satisfies the axioms, can a utility

U be assigned to each alternative choice option.

EUT was axiomised more than 60 years ago. Its axioms

include completeness, transitivity, continuity and independence

of preferences (see Von Neumann and Morgenstern, 1944 for

details). Simply speaking, completeness demands that there are

preferences across alternatives, transitivity requires that

preferences are ordered hierarchically, continuity requires that

there exists some probability such that the decision-maker is

indifferent between the most preferred and the least preferred

outcome, and independence demands that preference orders do

not reverse if a non-preferred alternative is added to the option

set.

In essence, EUT posits that a decision maker chooses

between risky prospects based on the utility of final asset

positions. This means that the decision maker chooses the

option yielding the highest expected utility of the final wealth

state after integrating the options’ prospects with the current

wealth. Expected utility is measured in arbitrary units, and is

the sum of the probability-weighted expected subjective values

of all possible outcomes. The subjective values are not

necessarily identical to their objective values, as current wealth,

biases, individual preferences, contexts and environmental and

social influences may affect their valuation (Friedman and

Savage, 1948, 1952; Bernoulli, 1954; cf. Kahneman and

Tversky, 1979; Powell, 2003; Glimcher and Rustichini, 2004).

Utility functions are generally believed to be concave for gains,

i.e., with increasing assets, the utility function increases

sublinearly and in a decelerating fashion. This concavity is

considered to underly risk aversion (Friedman and Savage,

1948; Bernoulli, 1954). For the sake of convenience,

throughout this review, we will use the term ‘utility’, which

is more common in economics, synonymously with the term

‘subjective value’, which is more common in psychology and

biology, although we acknowledge that not all authors in

economics, psychology and biology may agree on the

equivalence of the two terms.

2.3. Discounted utility theory as a normative framework

for intertemporal decisions

The discounted utility model (DUT) is the equivalent to

EUT in the domain of time. It provides an axiomised normative

framework to account for intertemporal decisions and parallels

EUT in many regards. For example, both models assume that

decision makers choose between options based on a weighted

sum of utilities, with either probabilities (EUT) or temporal

discount factors (DUT) as weights. Accordingly, the inter-

temporal utility function in DUT can be described by the

following equation:

Utðct; . . . ; cTÞ ¼
XT�t

k¼0

DðkÞuðctþkÞ (1)

where u(ct+k) is the instantaneous utility that a consumption

(reward) c will have at timepoint t + k, T is the time horizon, and

D(k) is the individual discount function, i.e., the weight by
which the instantaneous utility at the later timepoint t + k is

discounted from the perspective of timepoint t. As discussed

below, DUT assumes that the discount function D(k) is expo-

nential (Samuelson, 1937). Importantly, DUT posits that inter-

temporal decision-making can be described by a single discount

function D(k).

DUT has been first proposed more than 70 years ago by

Samuelson (1937), and has been axiomised and further

developed throughout the 20th century (Koopmans, 1960;

Lancaster, 1963; Fishburn and Rubinstein, 1982; cf. Prelec and

Loewenstein, 1991; Loewenstein, 1992; Frederick et al., 2002).

DUT demands that preferences between delayed outcomes

satisfy the following axioms:
� m
onotonicity of time preference,
� c
ompleteness of time preference,
� in
tertemporal transitivity,
� c
ontinuity of time preference
� in
tertemporal independence,
� s
tationarity.

Furthermore, the theory assumes:
� c
onstant discount rate,
� m
aximisation of utility rate.

Monotonicity in the domain of uncertainty means that

stochastically dominating prospects are preferred over stochas-

tically dominated prospects (a stochastically dominating

prospect is a prospect that can be ranked as superior to the

dominated prospect). Monotonicity of time preference (Lan-

caster, 1963) is the equivalent in the domain of time and holds

that

Aðt1Þ�Aðt2Þ; if; and only if; t2� t1 (2)

This means that commodity A, available at timepoint t1, will

be preferred over A, available at timepoint t2, if, and only if

A(t2) occurs later than A(t1). This axiom formalises the

empirical finding that a short-term reward is preferred over a

long-term reward.

Completeness, transitivity, and continuity are basically

equivalent to the axioms in EUT, only translated to the domain

of time. For example, intertemporal transitivity implies that, if

commodity A, delivered at timepoint t1, is preferred to

commodity B, delivered at timepoint t2, and B at time t2 is

preferred to C at time t3, then A at time t1 will be preferred to C

at t3. These axioms will not be further discussed here. As

concerns consumption independence in intertemporal choice:

this axiom states that preferences for consumptions (rewards)

should not be affected by the nature of consumptions in periods

in which consumption is identical. This means that the utility of

a reward should be independent of whether a reward was

already experienced in the past, or will be experienced at

another time. Even Samuelson and Koopmans acknowledged

that this assumption is of limited validity (cf. Frederick et al.,

2002), because an agent’s current preference between, say,



3 Of course, from a biological point of view, other aspects than merely energy

intake are also of importance to an organism, such as reproduction and sleep,

but for reasons of simplicity, we restrict this review to the discussion of energy

intake.
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pizza and steak is most certainly affected by whether he had

pizza already for the last few days.

Stationarity posits that

If ðA; tÞ� ðB; t þ tÞ; then ðA; sÞ� ðB; sþ tÞ (3)

This means that, if an agent is indifferent (�) between

commodity A, delivered at timepoint t, and commodity B,

delivered at timepoint t + t, he will still be indifferent when A

was delivered at a different timepoint s and B at timepoint s + t

(Strotz, 1955; Koopmans, 1960; Fishburn and Rubinstein,

1982). Indifference refers to the situation where a decision

maker chooses all commodities with equal probability. It is

assumed that the commodities have identical utility at the point

of indifference. Stationarity implies that the indifference

between two choice alternatives should depend only on the

difference in the delays that the outcomes can be realised, and,

given the time-difference between the outcomes remains the

same, indifference should be preserved at all different

timepoints. Hence, if both options were deferred into the

future by the same time interval, subjects should still be

indifferent between the options. For example, if you desire to

receive $10 in 5 days as much as receiving $50 in 20 days, then

you will still desire to receive $10 in 15 days as much as

receiving $50 in 30 days, i.e., when both delays are prolonged

by 10 days.

DUT posits that the discounting rate by which future

commodities are devalued should be constant (Samuelson,

1937). Constant discounting means that a given time delay has

the same relative impact on preferences and values, regardless

of when it occurs. Constant discounting is necessary to warrant

time-consistency, i.e., the postulate that ordering of preferences

at a later timepoint should be identical to current or earlier

preference orders (stationarity). Variable discount rates would

hence be conflicting with the assumption of stationarity and

consistency of preference orders (see below and Fig. 1 for

details on why this is the case). Exponential discount functions

have constant discount rates and were adopted by DUT

(Samuelson, 1937; Lancaster, 1963; Fishburn and Rubinstein,

1982; Benzion et al., 1989; cf., Ainslie, 1975; cf. Prelec and

Loewenstein, 1991; Fehr, 2002), for example (Lancaster,

1963):

ðA; tÞ�A e�kðt�t0Þ (4)

Eq. (4) states that the agent should be indifferent between a

reward with the amount A, delivered at a future timepoint t, and

the reward amount A at the present timepoint t0, exponentially

discounted for the interval t � t0, with k being an individually

different discount value. In other words, the expected utility of a

future outcome can be expressed as an exponential decay

function of the same outcome realised today.

One of the hallmarks of rational choice theories is the

assumption that decision makers strive to maximise utility, and/

or to optimise their cost–benefit function. In behavioural

ecology, optimal foraging theory (Stephens and Krebs, 1986)

makes similar assumptions about decision-making. Although

coming from a different academic discipline, it shares many
features with normative models in economics, and is therefore

worthwhile discussing here. In biology, utility maximisation in

the context of intertemporal choice can be viewed as

maximising the Darwinian fitness, with, for example, energy

intake per time unit as a proxy for Darwinian fitness3 (Stephens

and Krebs, 1986; Stephens and Anderson, 2001). This concept

is called rate maximisation. In formal terms, it is assumed that

organisms maximise, at least in the long run, the ratio of food

intake and the time needed to obtain or consume the food, as

described by the following quantity (Stephens and Krebs,

1986):

max

P1
i¼1 GiP1
i¼1 ti

(5)

where Gi represents the net energy gain obtained from con-

suming the ith food item (here basically corresponding to its

amount), and ti represents the time between food item i and the

previous food item i � 1. In a choice between large, delayed

and small, short-term rewards, rate maximisation predicts that

animals prefer large rewards when the ratio of reward amount

per time unit is higher for the large than for the small reward,

e.g., when the animal chooses between 10 items of food in 6 s or

4 items in 3 s. If the waiting time for large rewards increased to,

say, 9 s, rate maximisation would predict preference for the

small reward.

3. Irrational intertemporal decisions: anomalies in

intertemporal choice

3.1. Violation of the stationarity axiom

Stationarity predicts that the ranking of preferences between

several future outcomes should be preserved when the choice

outcomes are deferred into the future by a fixed interval. This

has been investigated in an empirical study where human

subjects chose between pairs of monetary rewards available

after different delays (Green et al., 1994). Subjects preferred a

small, short-delayed over a large, long-delayed reward.

However, when the delays to both rewards were advanced

by the same time interval, their preference reversed away from

the small towards the large reward. Notably, the prolongation of

the delays resulted in a preference reversal even though the

difference in delays remained identical (Green et al., 1994).

These time-inconsistent preferences represent a violation of

stationarity which is sometimes called the common difference

effect (Prelec and Loewenstein, 1991; Frederick et al., 2002). In

its extreme form, a literal discontinuity of preference has been

reported when immediate rewards are involved (immediacy

effect; Thaler, 1981; Benzion et al., 1989). Numerous studies

with human subjects (Ainslie, 1975; Thaler, 1981; Logue,

1988; Benzion et al., 1989; Loewenstein, 1992; Kirby and



Fig. 1. Preference reversals can be better explained by hyperbolic than exponential discounting. The figure depicts the situation where a subject first chooses between

a small, early and a large, delayed reward (proximal rewards), and subsequently, both rewards are deferred in time by the same time interval (distant rewards), thus

preserving the delay-difference between them. The figure plots the discounted value of a future reward (y-axis) as a function of reward amount and delay. Grey lines

represent the discounted value of the large reward, black lines the value of the small reward. (A) The x-axis depicts the delay to the reward, fat arrows indicate a large,

delayed reward, slim arrows a small, early reward. Due to constant discounting in the exponential function, the value of the large, delayed reward VL is larger than the

value of the small, early reward VS when both rewards are temporally proximal, and also when they are deferred by the same time interval, so that always holds:

VS < VL. (B) In hyperbolic discounting, the values of large and small rewards reverse when the rewards are deferred into the future: whereas VS > VL when both

rewards are relatively temporally proximal, VS < VL when they are relatively distant. Often, this rationale is illustrated in a somewhat different fashion, as shown in

(C) and (D). The x-axis depicts the temporal distance to the forthcoming reward from the perspective of the agent looking into the future, the attractiveness of the

rewards increases with decreasing temporal distance. The x-axis displays the agent’s position in time with respect to the temporally proximal and distant rewards.

Long, fat arrows indicate a large reward, short, thin arrows a small reward. (C) Exponential discounting: the small reward value is continuously higher than the large

reward value for distant and proximal rewards. (D) Hyperbolic discounting: when both rewards are temporally distant (left of the intersection of the lines), the value of

the large reward (grey line) exceeds that of the small reward (black line), and subjects should consequently prefer the large over the small reward. Due to the cross-

over of the curves, the value of the small reward exceeds that of the large reward once the subject gets close in time to the small reward (right of the intersection), and

they should now prefer the small over the large reward.
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Herrnstein, 1995; Green et al., 1997; Frederick et al., 2002;

McClure et al., 2004; Rohde, 2005), pigeons (Chung and

Herrnstein, 1967; Rachlin and Green, 1972; Ainslie, 1974;

Green et al., 1981) and rats (Ito and Asaki, 1982; Bennett, 2002)

replicated and confirmed the common difference and imme-

diacy effects.

3.2. Violation of the assumption of constant discounting

Stationarity implies constant discounting, i.e., a neutral

attitude towards time delay: a given delay should have the same

relative impact on utility regardless of when it occurs. Several

authors (Ainslie, 1975; Rachlin et al., 1991; Green and

Myerson, 1996; Frederick et al., 2002) pointed out that
preference reversals as discussed above cannot be explained by

constant discounting functions, such as exponential discount-

ing. As theoretically suggested by Ainslie (1975), and later

empirically shown by Mazur (Mazur, 1984, 1987, 1988;

Grossbard and Mazur, 1986) and others (Thaler, 1981; Benzion

et al., 1989; Rachlin et al., 1991; Myerson and Green, 1995;

Green and Myerson, 1996; Rohde, 2005; Jones and Rachlin,

2006; Glimcher et al., 2007), rewards delivered with short

delays are more steeply discounted than rewards with longer

delays. Mathematical fits to the empirical data obtained in these

studies indicated that a hyperbolic model:

V ¼ A

1þ kD
(6)



4 Because of this analogy, the sunk-cost effect is also frequently called

‘Concorde fallacy’ (Arkes and Ayton, 1999).
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approximates the data better than an exponential model, for

example:

V ¼ A e�kD (7)

where in both equations, V represents the temporally dis-

counted reward value (utility), A the amount of expected

reward, D the delay between response and reward, and k an

individually different discount rate.

Fig. 1 plots the value curves for two rewards differing in

quantity and delay and shifted to the future by the same time

interval. Fig. 1A shows the value curves for exponentially

discounted rewards, Fig. 1B displays the curves for hyperbo-

lically discounted curves.

In the exponential model, the value of the large reward VL

exceeds the value of the small reward VS in both temporally

proximal and distant reward situations because of the model’s

constant discount rate (VL > VS always holds; cf. Fig. 1A). In

contrast to this, the discount rates in the hyperbolic model are

not constant over time. Instead, hyperbolic discounting is

characterised by high discount rates over short horizons, but

low discount rates over long horizons. This results in the

reversal of the order of values, as illustrated in Fig. 1B: while

the small reward value is higher than the large reward value

(VS > VL) in the temporally proximal reward situation, VS is

smaller than VL (VL > VS; cf. Fig. 1B) for distant rewards,

although the time difference between both rewards is identical

in the proximal and distant situation. Hence, it is difficult to

explain preference reversals with a function assuming constant

discount rates, such as the exponential model, but such

reversals can be better accounted for by an asymmetric discount

function, as for example the hyperbolic function in Eq. (6), a

quasi-hyperbolic function (Laibson, 1997; a quasi-hyperbolic

function approximates a hyperbolic function, but consists of

often several, not necessarily hyperbolic subfunctions), or an

exponential model similar to Eq. (7), but where the discounting

factor k is variable and depends on the amount of the anticipated

reward (Green et al., 1994, 1997). Despite some recent

challenges (Schweighofer et al., 2006), the hyperbolic model is

still the most widely accepted description of time preference.

On a side note, although the observations of intertemporal

preference shifts and hyperbolic discounting represent viola-

tions of some of DUT’s axioms, it may not necessarily indicate

that reversing preferences over time is irrational per se. As

argued by several authors, a re-evaluation of the current

consumption plan and a subsequent change of course of action

actually constitutes the more rational behaviour in many

situations (Strotz, 1955; Kogut, 1990; Heath, 1995; Arkes and

Ayton, 1999; Karlsson et al., 2005). For instance, according to

most choice theories, rational decisions should be exclusively

prospective, and not retrospective. Thus, a decision maker

should choose the option with the highest expected (i.e., future)

value. When evaluating the interim success of a project that the

decision maker has previously committed to, earlier invest-

ments should play no role in the decision whether to continue

the investment, or whether to abandon the project and invest in

another one. The opposite behaviour, i.e., the escalation of
commitment to a failing project although an alternative activity

would promise better results, is called ‘the sunk cost effect’

(Kogut, 1990; Heath, 1995; Arkes and Ayton, 1999; Karlsson

et al., 2005). Such escalation of commitment seems to be

related to the amount of previous investments, and has been

shown in humans (Kogut, 1990; Schaubroeck and Davis, 1994;

Heath, 1995; Arkes and Ayton, 1999; Moon, 2001; Karlsson

et al., 2005) and animals (Arkes and Ayton, 1999; Navarro and

Fantino, 2005). It is unclear why subjects show the sunk cost

effect, and several attempts have been made to explain the

motivation for escalating commitment, including hesitation to

waste resources (Arkes and Ayton, 1999), loss aversion

(Schaubroeck and Davis, 1994), desire to complete a job

(Moon, 2001) or project-based mental accounting (Heath,

1995). Despite the disagreement on the causes, it is generally

undisputed that the sunk cost effect represents a deviation from

rationality, because subjects consider the past in their decisions,

therefore frequently and systematically prefer options with

lower expected values, and even choose projects that bring

about an accumulation of costs and losses. An example includes

the continued investment of money, time and resources into the

development of the supersonic plane ‘Concorde’, although the

weak economic prospects of the plane were evident long before

project completion.4 This shows that perseverating on a once

preferred choice option may lead to a less than optimal outcome

in the long run. A rational decision maker, on the other hand,

whose decision is only guided by weighing the expected values

will change his preferences whenever options other than the

initially preferred one yield higher expected values. Hence,

time inconsistencies can, under some circumstances, be

perfectly consistent with rational models of choice.

3.3. Violation of the assumption of utility maximisation

The rate maximisation hypothesis predicts that preferences

and preference shifts should depend exclusively on the ratio of

reward amount (or monetary value) and the duration between

the rewards. In many situations, however, decisions are not

determined by this ratio, but only by the waiting time preceding

the rewards. In those cases, shifting the preference to the

temporally proximal outcome is frequently not the optimal

behaviour. As an example take an animal that chooses between

a small, always immediate reward and a large, gradually

delayed reward. Assume that the inter-trial interval is adjusted

so that the total trial length is identical in all trials and

independent of delay length and other factors. The rate

maximisation hypothesis predicts that subjects should always

choose the large reward, independent of the delay between

response and reward, because only then would they maximise

the total energy intake per trial, or per experimental session,

respectively. However, neither pigeons (Rachlin and Green,

1972; Ainslie, 1974; Grossbard and Mazur, 1986; Mazur, 1988;

Kalenscher et al., 2005b), nor rats (Evenden and Ryan, 1996;
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Cardinal et al., 2000; Winstanley et al., 2004, 2006; Roesch

et al., 2006), mice (Isles et al., 2003, 2004), or monkeys (Hwang

et al., 2006; Louie and Glimcher, 2006) show the predicted

perseverance on the large reward alternative, but instead reverse

their preference to the small, immediate reward once the large

reward delay exceeds an individual threshold limit. The strong

preference for short-term options suggests that animals satisfy a

short-sighted decision rule (heuristic) which minimises waiting

time, but does not necessarily yield the economically best

outcome.

3.4. Gains and losses in intertemporal decision-making

DUT did not make a particular distinction between the

treatment of losses and gains. Hence, the aversiveness of losses

should be discounted as much as the attractiveness of gains

when the outcome is more and more delayed. However, Thaler

(1981) reports that the attractiveness of gains is reduced faster

than the aversiveness of losses, implying a different discount

rate for gains than for losses. This ‘sign-effect’ suggests a

different mental treatment of gains and losses, and is therefore

difficult to reconcile with DUT’s assumption that intertemporal

choice can be condensed into a single discount function. An

even greater challenge for DUT is the observation that many

human subjects prefer to expedite a loss instead of delaying it.

If losses loom less when they are temporally remote, as

predicted by DUT, subjects should be ready to defer losses into

the future. However, many subjects actually prefer to incur a

loss or an aversive event immediately rather than delay it

(Benzion et al., 1989; Berns et al., 2006).

3.5. Further anomalies

DUT’s postulate that the different motives in intertemporal

decision-making can be condensed into a single discount

function implies that discount rates should be the same for all

goods and categories, and should be independent of the way a

problem is mentally processed. This implication has been

challenged by a range of other findings, in addition to the sign-

effect discussed above. Framing, i.e., the way a problem is

presented, has been shown to have an effect on the discount

rate. For example, subjects who bought a good and expected its

delivery in 1 year were willing to pay an extra of $54 dollars to

have it delivered immediately. However, subjects who bought

the same good, but expected its immediate delivery, demanded

a compensation of $126 dollars if the delivery were delayed by

1 year (Loewenstein, 1988). Moreover, several studies have

shown that large positive outcomes are discounted at a lower

rate than small outcomes (‘magnitude effect’; Thaler, 1981;

Benzion et al., 1989; Green et al., 1994). Frederick et al.

(2002) list a range of further anomalies. This list includes a

preference for improving sequences, violations of indepen-

dence, and preference for spread. Preference for improving

sequences means that subjects prefer a stream of increasing

comfort over a stream of decreasing comfort, for example, an

increasing salary profile, even when the mean comfort is

identical. As indicated above, violations of independence, and
preference for spread refer to the fact that subjects prefer to

spread the acquisition and/or consumption of commodities in

time. For example, a person’s current preference for pizza

depends on whether she had pizza yesterday, or will have pizza

tomorrow.

3.6. Alternative theories

In the past, it was mainly economists, psychologists and

behavioural biologists who proposed alternative models of

intertemporal choice to explain these anomalies. Early

economic theories stressed the emotional and motivational

impact of waiting for dated outcomes, for example, the pains

and pleasures of anticipating an attractive reward, the

discomfort of deferring immediate gratification, the displeasure

of abstaining from consumption, etc. (see Loewenstein, 1992,

for a historical overview). In this tradition, some more recent

theories claim that the utility of a future commodity is derived

not only from the actual consumption of the good, but also from

the anticipation of this good (Loewenstein, 1987; see Section

4.6 for more details). Also somewhat inspired by the cognitive

flavour of the early economic models, the temptation account

by Gul and Pesendorfer (2001) posits that subjects experience

disutility from not choosing the most tempting, i.e., immediate

option. Subjects would hence be more content if the immediate

option was not available, and they hence adopt measures to

avoid future temptations. Yet another theory stresses that the

total amount of discounting over a time span increases as the

interval is more finely partitioned (Read, 2001). Such

‘subadditive discounting’ is an alternative to hyperbolic

discounting, and predicts that the discount rates for, say, three

8-month intervals should be different to the discount rate across

the sum of the three intervals, i.e., 24 months, but should not be

different across the three 8-month intervals. Read (2001) found

some empirical support for this idea. Other theories demanded a

radically new view on intertemporal decision-making, and went

so far as to assume that decisions can be best modelled by

assuming non-stationarity of personal preferences, which is

frequently portrayed using a somewhat catchy analogy of an

‘intrapersonal conflict between multiple temporally situated

selves’ (Thaler and Shefrin, 1981; Laibson, 1997; Fudenberg

and Levine, 2006; refer to Sections 4.7–4.9 for a detailed

coverage of these models). ‘Habit formation’, ‘reference point

shifts’ as predicted by prospect theory, and visceral influences

on the decision have also been suggested to influence

intertemporal decisions (see Frederick et al., 2002, for

overview).

Yet another theory (Staddon and Cerutti, 2003) posits that

hyperbolic discounting in animals is a by-product of temporal

control and can be explained by the linear waiting rule which, in

its simplest form, posits a linear relationship between response

latency (in this case, the time until an animal makes a self-

initiated response after having consumed a reward) and the

delay between reward deliveries. Because the linear waiting

rule appears to be obligatory, i.e., animals follow it even if they

delay or even prevent reward delivery by doing so, the rule may

represent a more fundamental temporal discrimination princi-
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ple than it may seem at first glance. Staddon and Cerutti (2003)

discussed the implications of linear waiting for a whole range of

choice phenomena, hyperbolic discounting being one of them.

Scalar expectancy theory by Gibbon (1977; cf. also Church and

Meck, 2003) can also account for time inconsistencies. Scalar

timing is the observation that the variance in accuracy of a time

interval estimate is proportional to the length of the to-be-timed

interval. Consider a subject who prefers a small, immediate

over a large, delayed reward. When a fixed time interval is

added to both delays, i.e., when both intervals become

relatively longer, the distributions of the time estimates for

both intervals will eventually overlap because of scalar timing,

and discrimination between the intervals becomes imperfect.

Because the perceived difference in time lengths is hence

decreasing when both delays become equally longer, the

relative impact of delay on the decision diminishes, the relative

impact of reward amount increases, and preference eventually

reverses. Moreover, it has been argued that good discrimination

of time intervals yields higher long-term reward rate (Stephens,

2002; Stephens et al., 2004). Because discrimination of long

intervals is imperfect, evolution may have favoured preference

for short delays and, hence, the use of short-sighted decision

rules.

A number of other attempts have been made in behavioural

ecology and psychology to explain why non-human animals do

not maximise reward rate. Many models presume that animals

achieve optimality in choice situations through simple choice

heuristics and rules-of-thumb, such as a win-stay-lose-shift

strategy or linear waiting (Staddon, 2001; Staddon and Cerutti,

2003). Hence, animals do not really maximise, they simply

follow a rule that happens to yield optimal results in

ecologically valid life situations. For intertemporal choices,

this means that, although the animals’ delay-sensitive choice

heuristics fail in artificial laboratory settings, they could

produce rate maximisation in real life (Kacelnik, 1997;

Stephens and Anderson, 2001; Stephens et al., 2004). Some

researchers suggested that, rather than the usual binary choice

requirement, a more ecologically valid scenario could

correspond to a patch-like, multi-source situation which entails

the decision whether to finish exploiting a current food site

(short-term availability of small food resources), or abandon the

food site preliminarily and travel to a next, potentially richer

patch (long-term and less certain, but larger food quantity;

Stephens and Anderson, 2001; Stephens et al., 2004). In several

studies, Stephens and Anderson (2001; Stephens et al., 2004)

have shown that short-term heuristics that aim to reduce waiting

time indeed yield rate maximisation in such patch-like

situations.

The multitude of different attempts to explain time

inconsistencies presented in this section shows that inter-

temporal choice is multifaceted and can be approached from

many different angles. The newly emerging field of neuro-

economics adds a new perspective to the discussion by

requiring that a viable theory should have a biological basis.

Although far from being able to explain all anomalies within a

unified theory, the neurobiological approach provides new and

promising insights into intertemporal choice.
3.7. Summary

There is evidence that DUT as a normative intertemporal

decision theory has limited descriptive validity because it fails

to adequately describe the reality of intertemporal choice

behaviour. Common difference and immediacy effects, and

the fact that preference reversals occur after deferring all choice

alternatives into the future by the same time interval, violate

assumptions of consistent choice, such as the stationarity

axiom. Such preference reversals cannot be explained by

models assuming a constant discount rate, whereas they can be

accounted for by hyperbolic discount functions. Accordingly,

in many studies, hyperbolic models consistently provided the

better fits to the empirical behavioural data compared to

exponential or linear models (Mazur, 1984; Grossbard and

Mazur, 1986; Green et al., 1997; Glimcher et al., 2007).

Hyperbolic discounting is therefore widely accepted in the

literature as an appropriate description of reward devaluation

over time. Furthermore, animals’ preferences depend on the

waiting time preceding the rewards, but not on the ratio of

reward amount and time-between-rewards. Hence, inconsistent

with the original optimal foraging formulation, animals seem to

‘satisfice’ (i.e., satisfy and suffice, in this case, satisfy a myopic

decision rule), rather than maximise (i.e., maximise the energy

intake rate). Other anomalies, such as the sign effect (different

treatment of gains and losses) and magnitude and framing

effects challenge the view that intertemporal choice can be

condensed into a single discount function.

In conclusion, behavioural evidence suggests that humans

and non-human animals systematically violate many of the

crucial assumptions of DUT when making intertemporal

decisions. A number of alternative models have been proposed

to account for these violations, some of which will be discussed

in greater detail later on in Section 4.

Note the similarities in the anomalies in DUT and EUT. The

sign effect in DUT, for example, corresponds to the reflection

effect in EUT (risk aversion in the domain of gains, but risk

seeking in the domain of losses), the common difference and

immediacy effects correspond to the common ratio and

certainty effects in EUT (overweighting of certain outcomes),

and the implications of both theories are challenged by framing

effects (see Kahneman and Tversky, 1979 for anomalies in

EUT, and Prelec and Loewenstein, 1991, for a comparison of

anomalies in DUT and EUT).

As a side note, normative models, such as DUT, are not

descriptive theories, and are not meant to be, although they are

frequently accepted as such. Hence, empirical findings

contradictory to the models’ assumptions and predictions are

not necessarily a challenge to the models per se, but merely

illustrate how real decision makers deviate from the ideal

optimal decision maker assumed by the models. Interestingly,

though, subjects often do not regard their own violations of

DUT axioms as irrational when pointed out to them. This is

different to violations of EUT (cf. Frederick et al., 2002). This

observation does not squelch the doubts about the descriptive

validity of DUT, but it certainly calls the intuitive validity of

DUT into question.
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4. The neuroscience of intertemporal choices

4.1. Intertemporal decision-making—a challenge for the

cognitive neurosciences

The challenge in neuroscientific research lies in discovering

the neural correlates of the cognitive mechanisms underlying

intertemporal choices, and, more importantly, formulating

neural models capable of explaining why subjects violate the

axioms and assumptions of DUT. With this goal in mind, we

will address the following issues in the remainder of this article:
1. I
dentify the networks involved in representing the two

essential decision parameters ‘delay’ and ‘reward amount’,

and reveal the mechanism that weighs these parameters and

converts them into a categorical response.
2. I
nvestigate neural circuits involved in representing sub-

jective value in the brain. Determine whether the choice

parameters are neurally integrated into a single representa-

tion of the discounted value signal (‘common currency’; cf.,

Montague and Berns, 2002), or whether distributed choice

mechanisms account for intertemporal choice.
3. U
nderstanding non-constant, e.g., hyperbolic, discounting is

essential for understanding time inconsistencies. The most

essential challenge in the cognitive neurosciences is to

identify the neural mechanisms that produces non-constant

discounting and time-inconsistencies.

4.2. Neural representation of the decision variables ‘reward

delay’ and ‘reward amount’

An intertemporal decision is determined by the values of the

different outcomes, and the delay until the outcomes can be

realised, or, in other words, by the integration of expected

reward amount and time-to-reward. Both constituents, i.e.,

reward amount and time, are represented in the brain.

Neurons in many different brain areas represent information

that is pertinent to the amount of an actual or expected reward.

The activity of single units in dorsolateral prefrontal cortex

(DLPFC; Leon and Shadlen, 1999; Wallis and Miller, 2003),

orbitofrontal cortex (OFC; Wallis and Miller, 2003; Roesch and

Olson, 2004; Van Duuren et al., 2007), and post-arcuate

premotor cortex (Roesch and Olson, 2004) of rats and monkeys,

and in the avian equivalent of the prefrontal cortex (Kalenscher

et al., 2005b) is modulated by the magnitude of an expected

reward, either during the presentation of a reward-predicting

cue, or during the delay between the cue and the delivery of the

reward, hence before the actual reward is delivered. This has

been taken as evidence that frontal structures play a role in

maintaining reward value in memory while waiting for the

reward, representing ongoing events, and monitoring the

expected consequences of choices (Schoenbaum et al., 1998;

Montague and Berns, 2002; Winstanley et al., 2004, 2005; Van

Duuren et al., 2007). Likewise, single unit activity in the

striatum, in particular in the ventral striatum, including nucleus

accumbens (NAc), correlates with the amount of an expected

reward in monkeys (Hollerman et al., 1998; Hassani et al.,
2001; Cromwell and Schultz, 2003) and birds (Izawa et al.,

2005). In addition, neurons in monkey and rat OFC and lateral

prefrontal cortex (Schoenbaum et al., 1998; Tremblay and

Schultz, 1999; Hikosaka and Watanabe, 2000; Wallis and

Miller, 2003; Roesch and Olson, 2004; Padoa-Schioppa and

Assad, 2006; Roesch et al., 2006), DLPFC (Watanabe, 1996;

Wallis and Miller, 2003), basolateral amygdala (BLA;

Schoenbaum et al., 1998; Baxter and Murray, 2002), and

NAc of monkeys (Hassani et al., 2001) and birds (Yanagihara

et al., 2001) discriminate between expected rewards that differ

not only in their quantity, but also in type and quality. OFC

neurons in monkeys show anticipatory and reward discriminat-

ing activity even before the instructive cue occurs (Hikosaka

and Watanabe, 2004), hence suggesting that these neurons

reflect long-range reward expectancy. Reward-discriminating

units have also been found in a range of other structures, most

notably in the midbrain ventral tegmental area and substantia

nigra pars compacta (Schultz, 2002, 2004; Tobler et al., 2005),

but also in lateral intraparietal area, anterior and posterior

cingulate cortex, hypothalamus and others (Platt and Glimcher,

1999; cf. Schultz, 2002, 2004; McCoy and Platt, 2005).

Neurons in prefrontal cortex (PFC) and parietal cortex also

track the performance- and reward history in an oculomotor

task (Hasegawa et al., 2000; Sugrue et al., 2004), and

statistically predict future performance (Hasegawa et al.,

2000; see also Roelfsema, 2002).

In addition to reward amount, time is likewise processed in

various areas in the brain. Human research indicates that several

distributed brain regions play a role in processing interval

timing, including striatum, cerebellum, thalamus and various

parts of the cortex (for overviews, cf., Ivry, 1996, 1997; Matell

and Meck, 2000; Buonomano and Karmarkar, 2002; Ivry et al.,

2002; Durstewitz, 2004; Buhusi and Meck, 2005). Such timing

could be implemented either by a central clock or pacemaker

functioning as the brain’s metronome (cf. Buonomano and

Karmarkar, 2002; Buhusi and Meck, 2005). Alternatively,

newer models conjecture that interval-timing is implemented

by so-called climbing activity, i.e., the gradual increase of

neural discharge rate across a delay. It has been shown that the

slope and the timepoint of maximal activation of this climbing

function is scaled to the duration of the to-be-timed interval.

Given the existence of a read-out mechanism once the ramping

activity reaches a threshold, interval timing can be accom-

plished by adjusting the slope of the climbing function to the

required delay length (Durstewitz, 2003, 2004). Such interval-

timing-dependent ramping activity has been found in posterior

thalamus (Komura et al., 2001), posterior parietal cortex (Leon

and Shadlen, 2003; Janssen and Shadlen, 2005), inferotemporal

cortex (Reutimann et al., 2004), DLPFC (Kojima and Gold-

man-Rakic, 1982; Rainer and Miller, 2002; Brody et al., 2003;

Sakurai et al., 2004) and its equivalent structure in the avian

brain (Kalenscher et al., 2006b), cingulate cortex (Kojima and

Goldman-Rakic, 1982), ventral striatum (Izawa et al., 2005),

primary visual cortex (Shuler and Bear, 2006), frontal and

supplementary eye fields (Sato and Schall, 2003; Roesch and

Olson, 2005a), and premotor and supplementary motor cortex

(Roesch and Olson, 2005a).
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Staddon and Cerutti (2003) mathematically proved that

linear waiting as an obligatory interval time discrimination rule

can account for a range of timing and choice phenomena, such

as Weber’s law of scalar timing (cf. Church and Meck, 2003),

difference in risk attitude in the domains of gains and losses

(Kahneman and Tversky, 1979), and also hyperbolic discount-

ing. Thus, if the neural processes examined in this section are

causal mechanisms of interval timing, these mechanisms could

be sufficient to explain hyperbolic discounting and hence many

of the anomalies discussed in Section 3. This would eliminate

the need to look for the elusive neural counterpart of

intertemporal choice. However, because evidence that climbing

functions can be explained within the linear waiting framework

is still elusive, this is just speculative at this point.

Note that the majority of the cited studies on interval timing

involved time delays in the range of a few seconds. These time

intervals match the intervals used in many of the animal choice

experiments, but not necessarily those used in human research.

In addition to the fact that human subjects are usually instructed

to imagine the delays, which means they do not experience the

ends of the delays, the interval lengths are typically in the range

of months and years, not in seconds. The measurement of

interval durations in a long and short range may recruit entirely

different neural mechanisms (cf. Hinton and Meck, 1997;

Lewis and Miall, 2003). It is hence uncertain whether the

timing mechanisms discussed in this section actually play a role

in intertemporal choice when imagined delay intervals of well

above several seconds are involved.

4.3. Neuroanatomy of intertemporal decisions

Much of our knowledge about the neuroanatomy of

intertemporal decision-making stems from neuropsychological

research with patients that show symptoms of abnormally

disadvantageous delay-discounting, e.g., future-blindness and

exaggerated impulsiveness (Bechara et al., 1996, 1998, 2000a,

b; Hartje and Poeck, 1997; Kolb and Whishaw, 2003). Such

pathologies include attention deficit hyperactivity disorder,

drug addiction, problem gambling, and frontal lobe syndrome.

All of these conditions presumably involve a pathological

modulation of frontal lobe function. The PFC is generally

considered the crucial bridge in the perception-action cycle that

mediates action-reward contingencies across time (Quintana

and Fuster, 1999; Fuster, 2000). Research on frontal lobe

dysfunction has revealed that patients with lesions in their

ventromedial prefrontal cortex (VMPFC) tend to overly

strongly discount, or even neglect, the future consequences

of their decisions, be they appetitive or aversive (Bechara et al.,

1996, 1998, 2000a, b). Due to this evidence, and the fact that

frontal cortex is generally associated with decision-making

(Lee et al., 2007), prefrontal regions are generally considered

prime candidate structures to control delay discounting and

impulsiveness (in this context defined as the propensity to

choose the small, immediate reward).

Recently, animal lesion studies have somewhat challenged

this conclusion. One study showed that lesions of the core of the

rodent NAc, but not the medial PFC (mPFC) or the anterior
cingulate cortex (ACC), resulted in a reduced delay tolerance

and increased impulsiveness in a delay discounting procedure

(Cardinal et al., 2001). This points towards a special role of the

ventral striatum, which contains the NAc, in producing time

preference. There is also evidence for the involvement of the

avian equivalent of the NAc in impulsive decision-making

(Izawa et al., 2003, 2005), and recent neuroimaging experi-

ments with human subjects suggested that striatal activation

extending to the NAc is linked to choices of immediate rewards

(Wittmann et al., 2007), and that the individual preference for

immediate over delayed rewards covaries with differences in

ventral striatum activations to reward feedback (Hariri et al.,

2006). However, we also note that the core of the NAc is heavily

dependent in its general functioning on prefrontal input (Voorn

et al., 2004), which brings up the question to what extent the

NAc’s special role is implemented independently from, or in

concert with, some prefrontal regions, e.g., OFC or agranular

insular cortex.

Moreover, several studies have shown that the integrity of

the BLA, and its connection with OFC, is necessary to flexibly

adapt the representation of changing reward values and their

link with reward-predicting cues during performance in

reinforcer devaluation tasks, in which rewards are devalued

through, for example, satiation, or conditioned taste aversion

(Baxter et al., 2000; Baxter and Murray, 2002; Pickens et al.,

2003). Delay discounting tasks likewise require the constant re-

evaluation and updating of reward value representations during

varying delays, indicating that amygdala–OFC interactions

may be important for mediating intertemporal decisions, too.

However, results are ambiguous: Although lesions of the rat

BLA increased preference for short-term rewards lesions of the

OFC and the subthalamic nucleus (STN) actually decreased

impulsive choices in some studies (Kheramin et al., 2002;

Winstanley et al., 2004, 2005), but increased impulsive choices

in other studies (Mobini et al., 2002; Rudebeck et al., 2006).

Although the discrepant results in the OFC lesion studies

could be also explained by subtle differences in task

requirements or the spatial extent of the lesion, these studies

nevertheless suggest that NAc, BLA, STN, and OFC appear to

play different roles in impulsive choice behaviour. Winstanley

and colleagues conclude that NAc and BLA may be important

for representing and maintaining the subjective reward value

across the delay, STN may be relevant for permitting basic

Pavlovian associations, and OFC may play a role in monitoring

and updating representations of expected rewards. Therefore,

lesions of NAc and BLA should increase impulsiveness by

impairing the representation or maintenance of incentive

salience, but OFC lesions should induce perseveration by

impairing the updating of subjective reward values during

increasing delays. However, the functions of prefrontal

subregions remain somewhat unclear, because a recent

microdialysis study found evidence for dissociable roles of

rat mPFC and OFC in impulsive decision-making, as reflected

by differences in the monoaminergic regulation of these areas

(Winstanley et al., 2006). The results of this study suggest that

mPFC was relevant for representing the response-reward

contingencies, and OFC played a direct role during decision-



T. Kalenscher, C.M.A. Pennartz / Progress in Neurobiology 84 (2008) 284–315 295
making, hence pointing to a direct involvement of rat OFC in

choice behaviour that extends beyond simple outcome

monitoring and representation. A recent electrophysiological

study in rats (Roesch et al., 2006) that will be discussed in

greater detail below, indicates that the rat OFC may contain

dissociable, separate reward-processing networks that deal with

the parameters delay and reward amount independently. This

independent processing may explain some of the heterogeneity

of the results of the OFC lesion studies. The role of other

structures implicated in reward processing, processing of

decision costs, decision-making in general and/or time

estimation have also been examined in the context of

intertemporal decisions, such as the shell of the NAc, anterior

cingulate cortex, subparts of the rat mPFC including prelimbic

and infralimbic cortex, the hippocampus, and the insula.

Wittmann et al. (2007) found evidence that posterior insula was

activated when human subjects choose delayed over immediate

reward, suggesting that the insula may be involved in delaying

gratification. The precise part of other structures in inter-

temporal choice is, at best, unclear (see Cardinal, 2006 for

review). In summary, although their exact function remains to

be resolved, evidence suggests the involvement of various

limbic reward-related structures and frontal areas, including the

OFC, in intertemporal decision-making.

4.4. Neural integration of ‘reward delay’ and ‘reward

amount’

In Section 4.2, we have outlined that the two essential

parameters for time discounting, reward amount and interval
Fig. 2. Neural correlates of temporally discounted subjective reward value in the pi

delayed to the small, immediate reward (delay onset at time zero). This figure show

plots of the reward-preceding sustained delay activity of one exemplar neuron. The P

plots represents one spike, each row corresponds to one trial. (A) Before the preferenc

of trials. The solid black line indicates the PSTH for early trials where the delay was m

was somewhat longer, and the dotted line indicates the PSTH in large-reward trial

immediate reward was just about to occur. This figure shows that the final level of sus

PSTHs and raster plots of the same neuron across trials following the preference shif

systematic variation in the neuron’s discharge rate across the trials. In parts modified

Elsevier.
time are represented in many different parts in the brain. In this

section, we will address the question how, and if, these

ingredients are neurally integrated to represent a discounted

reward value. Following the evidence discussed in Section 4.3,

a first guess for a convergence site is the OFC. To address

whether OFC neurons indeed represent a compound of reward

amount and delay, Roesch and Olson (2005b) trained monkeys

in two tasks, one with a variable delay and a fixed reward

amount, and another one with a variable reward, but fixed delay.

OFC cells responded more strongly to a cue predicting the

quantity of the upcoming reward when the monkeys expected a

large compared to a small reward, and the same neurons were

also more active to delay-predicting cues when the animals

anticipated a short versus a long delay between cue and

response. This suggests that reward proximity and quantity are

processed by the same orbitofrontal neurons, implying they

may be integrated on a single-cell level. However, delay and

reward amount were not varied simultaneously in this study,

hence it remains elusive whether the neurons were merely tuned

to the respective task requirement, or whether they encoded the

genuine, temporally discounted reward value. There is further

preliminary evidence that units in the monkey lateral

intraparietal area (Louie and Glimcher, 2006), monkey DLPFC

(Hwang et al., 2006), rat ventral tegmental area (Roesch,

personal communication) and possibly also human ventral

striatum and amygdala (Gregorios-Pippas et al., 2005)

represent, or even integrate, both decision parameters when

choosing between differently dated and sized rewards.

One study provided direct evidence for an integration of

reward proximity and amount on a single-cell level during
geon brain. Neural activity before and after the preference shift from the large,

s the averaged and smoothed peri-stimulus time histograms (PSTHs) and raster

STHs indicate the neuron’s discharge rate (in Hz), each vertical bar in the raster

e shift, pigeons preferred the large reward, but the delay increased across blocks

inimal, the dashed line indicates the PSTH in large-reward trials where the delay

s where the delay was maximal, and the preference shift to the small, always

tained activity (grey box) decreased as the length of the delay increased. (B) The

t where the pigeon preferred the small, always immediate reward. There was no

from Kalenscher et al. (2005b). Copyright 2005 with friendly permission from



Fig. 3. Neural Activation pattern in the study by Kalenscher et al. (2005b) (see

Fig. 2), and model fits. The black solid diamonds indicate the mean (�S.E.M.)

activation magnitude, averaged across the neurons of interest. The left part of

the panel (tick marks 1–3 on the x-axis, the tick marks are referring to block

numbers) shows the development of the neural activity across trials before the

preference shift, i.e., pigeons prefer the large reward and the delay length is

increasing. The right part of the panel (tick marks 4–6) shows the activation

pattern across trials following the preference shift, i.e., due to the long waiting

time preceding large rewards, pigeons prefer the small reward and the delay

length is constantly short. This figure confirms that the neural activity was

negatively correlated with delay duration, but it also shows that the same

neurons had higher activity in anticipation of large compared to small rewards

when the delay preceding both rewards was equivalent (tick mark 1 compared to

tick marks 4, 5, or 6). The other symbols show the model fits (light grey

rectangles and solid light grey line: hyperbolic fit, grey triangles and dotted line:

linear fit, dark grey circles and dashed dark grey line: exponential fit). The linear

model approximated the empirical data clearly worse than the two other models.

Note that the linear model could have approximated the neural data preceding

the preference shift relatively well, but the fit was poor because of the inclusion

of the data following the preference shift. Although the differences between the

hyperbolic and the exponential model were subtle, a goodness-of-fit criterion

confirmed that the hyperbolic function provided a better fit. Reprinted and in

parts modified from Kalenscher et al. (2005b). Copyright 2005 with friendly

permission from Elsevier.
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intertemporal decision-making (Kalenscher et al., 2005b).

Pigeons were trained in a delay discounting task to choose

between a small, always immediate and a large, gradually

delayed reward. The trial length was identical across all trials.

The animals showed the typical within-session preference shift

once the delay preceding the large reward exceeded an

individually different tolerance limit, hence replicating the

previous finding that subjects do not maximise their rate of

energy intake, but rather employ a waiting-time sensitive

choice heuristic. A neural correlate of this heuristic should

likewise show delay-sensitivity.

Single-cell recordings in the nidopallium caudolaterale

(NCL), a structure in the avian brain functionally comparable to

the mammalian PFC (Mogensen and Divac, 1982, 1993; Kröner

and Güntürkün, 1999; Diekamp et al., 2002; Kalenscher et al.,

2003, 2005a; Lissek and Güntürkün, 2003; Reiner et al., 2004;

Güntürkün, 2005; Jarvis et al., 2005) provided evidence for

such a neural correlate. Some neurons showed significantly

enhanced sustained delay activity between response and reward

delivery (Figs. 2 and 3). The activity of a subset of these

neurons was correlated with the temporal proximity to the

expected reward, i.e., given a fixed reward amount, the

activation magnitude decreased with increasing delay, and was

unmodulated across trials with equal delays. Importantly, when

comparing the activity levels of these neurons across trials with

identical delay lengths, but different reward amounts, the neural

activation magnitude was higher when the pigeons expected a

large compared to a small reward. This indicates that the

neurons’ activity levels were a function of both decision

parameters ‘reward proximity’ and ‘quantity’, and therefore

presumably reflected the temporally discounted utility of the

reward. In support of this conclusion, the compound neural

activation level correlated with the pigeons’ differential

preference for the large or the small reward, and thus with

the occurrence of the preference shift. Hence, this study

suggests that the discounted reward value is represented on a

single-neuron level.

If one attempts to discover a good indication of processes

related to the irrationality of intertemporal choice patterns, it is

necessary to show that the neural correlate follows the

predictions of non-constant, disproportionate time discounting

models. A fit of a linear, an exponential, and a hyperbolic model

to the data of Kalenscher et al. (2005b) study showed that the

hyperbolic and the exponential model approximated the data

better than the linear model (Fig. 3). However, although the fit

of the hyperbolic model was better than that of the exponential

model, as determined by a goodness-of-fit criterion, this

superiority was subtle, and future research needs to determine

which function ultimately provides the better fit.

4.5. Is the discounted reward value represented on a

single-cell or population level?

Not all electrophysiological studies are consistent with this

finding. Two recent studies showed evidence for a distributed

representation of intertemporal choice parameters. One study

with chicks revealed that reward amount and delay were
discretely coded in different subpopulations of neurons in the

avian ventral striatum (Izawa et al., 2005). Another study

(Roesch et al., 2006) found similar results for OFC neurons. In

this experiment, rats were trained to respond to one of two fluid

wells with initially identical delays and reward amounts. The

authors recorded the activity of single OFC neurons, and varied

either delay or amount independently, which allowed them to

disentangle a reward-quantity from a delay-signal in the brain.

They found a number of neurons that were active in anticipation

of reward until shortly after reward delivery. In contrast to the

firing properties of monkey OFC neurons described above,

there was no evidence that single OFC cells in rats co-
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represented amount and delay, as the activity of a subset of

neurons correlated with amount, but not delay, and the activity

of a different subset (negatively) correlated with delay, but not

amount. This indicates that OFC neurons had dissociable

representations of the values of differently delayed and sized

rewards, suggesting that the discounted reward values were not

represented on a single cell level, but on a population level.

Roesch et al. (2006, 2007) interpreted this result by

proposing that OFC fulfils a double function: maintaining a

reward-expectancy signal across a delay, and flexibly dis-

counting the representation of increasingly delayed rewards

independently of value representation. Their studies and others

(Tremblay and Schultz, 1999; Montague and Berns, 2002;

Kalenscher et al., 2005b, 2006a, b, see above) showed that a

subset of neurons in OFC or related structures exhibit sustained

activity across the delay preceding a reward. Such a signal

bridges the gap between reward-predicting cues and reward

delivery, and could thus facilitate the formation of cue-outcome

or cue-value representations when reward delivery is delayed,

for example in BLA (Saddoris et al., 2005) or NAc (Cardinal

et al., 2001).

This dual task hypothesis may explain the conflicting results

in the OFC lesion studies reported above. Animals that have

been fully trained in a delay-discounting task have already

formed strong associations between cue and delayed reward.

Lesioning the OFC in those animals will deprive them of a

discounting signal, and hence weaken their ability to flexibly

update the discounted reward value. As a result, compared to

controls, the lesioned animals will be more likely to wait for an

increasingly delayed reward, hence showing a reduction in

impulsivity, as reported by Kheramin et al. (2002) or

Winstanley et al. (2004). On the other hand, animals lesioned

before proper training may be unable to maintain the reward-

expectancy signal across the delay, therefore having deficits in

acquiring the cue-outcome association when the outcome is

delayed. As a result, compared to control animals, their cue-

outcome associations should become weaker with increasing

delay lengths, and they should appear more impulsive, i.e., be

less likely to choose increasingly delayed rewards, as has been

shown by Mobini et al. (2002).

It is still unclear, though, why some evidence suggests that

reward value is neurally represented on single-cell level

(Kalenscher et al., 2005b; Roesch and Olson, 2005b), whereas

other evidence (Izawa et al., 2005; Roesch et al., 2006) points

towards a more complex, probably distributed encoding of

time-discounted value. The dissimilarity of the results may

have diverse reasons. First, they may be attributable to species-

specific differences, implying that pigeons (Kalenscher et al.,

2005b) and monkeys (Roesch and Olson, 2005b) may employ

different discounting mechanisms than rats (Roesch et al.,

2006). However, there is evidence that delay discounting is an

evolutionary ancient process (Hodges and Wolf, 1981). It is

therefore not unlikely that both species share similar

discounting mechanisms. Second, the two parameters ‘reward

amount’ and ‘delay’ were varied independently in the rat-study

by Roesch et al. (2006), but combined in the pigeon-study by

Kalenscher et al. (2005b). Thus, unlike the pigeons, the rats
were never exposed to a situation that required them to integrate

reward amount and delay. If OFC neurons are tuned

differentially to different task requirements, it is not surprising

that they reflected time and delay independently in the

experiment by Roesch et al. (2006), but integrated both

parameters in Kalenscher et al. (2005b) study. However, in the

monkey study (Roesch and Olson, 2005b), delay and reward

quantity were also not combined, but the OFC neurons

nevertheless showed evidence of co-representing both para-

meters. These considerations imply that the results from either

or all experiments may be peculiar, non-generalisable effects

that are only valid within the particular task configuration.

Third, although the NCL is believed to be equivalent to the

PFC, the NCL-subdivision where the reported neurons were

found may not be comparable to OFC, but may correspond to

another part of the mammalian brain. Consequently, an

integrated signal may, thus, be found elsewhere in the

mammalian brain, for instance in more dorsolateral prefrontal

(Hwang et al., 2006) or parietal regions (Louie and Glimcher,

2006), or in dopaminergic midbrain structures (cf. Tobler et al.,

2005; Roesch, personal communication).

4.6. Utility from anticipation—the value of passage of time

in the brain

As briefly mentioned in Section 3.6, the passage of time

before an event occurs may have a utility in itself. According to

the ‘utility from anticipation’ model (Loewenstein, 1987), the

final utility of a future outcome is a combination of the utility

derived from anticipating the outcome, and the discounted

utility of the future consumption. For example, an exponen-

tially discounted utility function may be deformed by an

additional anticipatory-utility term, so that the resulting curve

deviates from its original exponential shape. This theory can

explain the sign-effect holding that temporal prospects in the

domain of losses are discounted more strongly than in the

domain of gains: if dreading future aversive outcomes is

stronger than relishing appetitive outcomes, then waiting time

would have a stronger impact on the overall disutility in the

domain of costs/aversive events than on the overall utility in the

domain of gains. It can also explain why subjects frequently

speed up the delivery of aversive events instead of delaying it

(Benzion et al., 1989, see Section 3.4) because they aim to end

the disutility of dreading the looming detriment. Furthermore, it

can also account for why the discount rate is not the same for all

goods and categories of decisions.

Evidence for the theory of utility from anticipation comes

from studying the neuroscience of dated aversive events

(Berns et al., 2006). In a neuroimaging study, human subjects

chose between pairs of electric shocks of different intensities,

delivered at different timepoints after the choice. As shown

before, subjects tended to speed up the shock delivery, i.e.,

when the voltages were identical, they generally preferred the

shorter delay. Some subjects (‘high dreaders’) even preferred

higher over lower shock intensities if the stronger shocks

were administered after a shorter delay. The behavioural

difference between ‘high dreaders’ and the other subjects
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sense, the models imply that the behaviour of a single agent is determined by

the interaction of two or more subsystems.
6 Commitment usually refers to measures taken by an agent to avoid antici-

pated preference reversals by forcing himself to choose in the future the option

that is currently preferred, for example, through restricting the future choice

space. Restricting the future choice space can be accomplished by, for example,

eliminating the option that seems inferior now, but may be tempting in the

future (cf. Rachlin and Green, 1972; Ainslie, 1975; Laibson, 1997). As an

example, take Odysseus who tied himself to the mast of his ship to avoid

succumbing to his anticipated temptation to follow the sirens’ call and therefore

doom his ship. The issue of self-control and commitment is an entire field of

research in itself, and although closely related to this article’s topic, not further

covered here.
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(‘mild dreaders’) was unlikely due to a higher sensitivity to

the noxious stimulation because, at the timepoints of shock

administration, there was no or little difference in the effect

of voltage or delay on the blood-oxygen-level dependent

(BOLD) signal between the subjects in structures usually

associated with somatosensory, visceral and emotional

aspects of pain, the so-called pain matrix (including primary

and secondary somatosensory cortex, anterior and posterior

insula, caudal ACC, amygdala and other regions; see

Fig. 4A). However, compared to the mild dreaders, the high

dreaders had an earlier and more sustained BOLD response

during the delay before the shock, i.e., in the anticipation

phase, in several caudal regions of the pain matrix, including

caudal ACC, posterior insula, and, most pronounced, in

secondary somatosensory cortex (Fig. 4A). Moreover, the

BOLD responses in secondary somatosensory cortex could be

better approximated by a discount function incorporating a

dread term than a discount function without such a parameter.

Hence, the neural activations in caudal parts of the pain

matrix tracked the between-subject differences in suscept-

ibility to delay. Because these regions have been previously

implicated in effects of attention, this study suggests that the

experience of dread, and the motivation to speed up shock

administration, comes from the attention devoted to the

anticipated shock.

4.7. A single valuation mechanism or multiple choice

systems?

Despite showing neural evidence for the (dis)utility of

anticipation, Berns et al. (2006) did not address how and

where the anticipatory (dis)utility was integrated with the

discounted (dis)utility of the outcome. Moreover, this study

was about dread, and it is unclear if and how the neural

results translate to the domain of gains. In other words, it is

still elusive how a non-constant, hyperbolic value-curve for

positive outcomes comes about, and how this mechanism is

implemented in the brain.

Roughly speaking, there are two schools of thought on this

issue: according to one, genuine hyperbolic discounting is the

key to understand time inconsistencies and other anomalies in

intertemporal choice. That is, hyperbolic discounting in the

domain of rewards or other appetitive events could stem from a

single valuation mechanism for economic decisions (Samuel-

son, 1937; Rachlin, 2000; Montague and Berns, 2002; Roesch

and Olson, 2004, 2005b; Kalenscher et al., 2005b; Padoa-

Schioppa and Assad, 2006). Along with this idea, non-constant

discounting could be driven, for example, by a non-linear

integration of waiting time and reward amount on a single cell

level (Kalenscher et al., 2005b).

Alternatively, preference reversals can be explained by

positing a conflict between one’s today’s preferences when the

outcomes of the current decisions are far away in time, and the

preferences that will be held in the future when the outcomes

are close in time. It is as if an agent’s current ‘self’ exhibits

different preferences than his future ‘self’ (non-stationarity of

preferences). Several authors have therefore proposed that the
processes resulting in this ‘intrapersonal dynamic conflict’ can

be modelled by positing multiple economic ‘selves’5 in time

(e.g., Thaler and Shefrin, 1981; Laibson, 1997; Fudenberg and

Levine, 2006): there would be two ‘selves’ within one person, a

myopic and a far-sighted ‘self’, who alternately take control

over behaviour. Although not every author explicitly referred to

temporally situated ‘selves’, many made comparable assump-

tions, and posited the existence of separate, competing decision

processes, for example a ‘hot’ emotional system with a short

time horizon, dealing for instance with the emotional

temptation of short-term goals, the discomfort of deferring a

proximate goal, or the impatience to realise a goal, versus a

‘cool’ far-sighted reasoning system involved in economic

planning and cost–benefit trade-offs (e.g., Metcalfe and

Mischel, 1999; Loewenstein and O’Donoghue, 2004; cf. also

Sanfey et al., 2006). Although some theories (Fudenberg and

Levine, 2006) assume that the different choice systems share

the same base preferences, and differ only in how they regard

the future, other models (Metcalfe and Mischel, 1999) propose

that the different processes have at least partly different

preferences, and drive the decision maker in opposite directions

of choice. In addition, the models disagree in their assumptions

on the strategies people use to regulate their own future

behaviour, i.e., how the long-range or ‘reasoning’ system

controls the short-range or ‘emotional’ system. For example,

they contain different notions of self-control that impose

different costs to the various sub-systems, for example, by

reducing the future decision space through commitment to a

choice option.6

Despite critical differences, all models have in common that

temporal inconsistencies in preference arise from the specific

interaction between the multiple choice systems. For example,

because the impact of the ‘hot’ system is strong for short delays,

but weak for long delays, people should discount rewards

stronger at shorter delays, but less strong at long delays, and

hence show temporal inconsistencies in preference.

4.8. Evidence for multiple decision networks in the brain

Inspired by the multiple-process models, Laibson (1997)

proposed a quasi-hyperbolic utility function which is composed

of two components, a b- and a d-component. The d-component

corresponds to the economic planning system with exponential
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discounting and a long time horizon, the b-component

represents the short-term system, which gives extra weight

to instant rewards. Neuroscientific evidence for the b–d-model

has been found in recent neuroimaging experiments (McClure

et al., 2004, 2007; Tanaka et al., 2004; see Fig. 4B and C). In

one of these studies (McClure et al., 2004), human subjects

chose between two delayed monetary rewards, where the larger

reward was always more delayed than the smaller reward, and

the delays ranged from immediate delivery to several weeks

delay. When one of the choice options comprised a reward

delivered immediately, or with a minimal delay, limbic brain

areas, including ventral striatum, medial OFC and mPFC, were

stronger activated than when both rewards were in the distant

future. Moreover, lateral prefrontal and parietal areas were

activated in all choice situations, independent of the delay, but

when the subjects preferred the later reward over the more

immediate, the activation magnitude in lateral prefrontal cortex

was elevated. This result allowed to dissociate the contributions

of two separate, distinct processes believed to correspond to the

b- and d-systems: limbic systems were selectively activated

when the choices produced an immediate or short-term

outcome, and therefore qualified as a potential candidate for

the impulsive b-system. Lateral prefrontal and parietal areas

were non-selectively activated, but had a stronger activation

level when the subjects made a far-sighted decision, suggesting

it could be a correlate of the long-run d-system. Similar results

have been found by Tanaka et al. (2004).

It is unclear how the different choice systems are supposed

to influence a decision. The computational outcome of both

systems may be combined into a single integrated utility

function which could then be used to guide the decision. This is

consistent with the evidence discussed above that the

discounted value is represented as a single currency (Montague

and Berns, 2002), for example in OFC (Roesch and Olson,

2005b) or NCL (Kalenscher et al., 2005b). Alternatively, a race-

model is also conceivable in which all systems independently

exert an influence on a decision network generating the

categorical decision without being integrated into a single

utility representation. According to this view, both systems

compete with each other, and following a winner-takes-all

principle, the stronger of both systems dominates the weaker

system, and determines the decision. Evidence for such winner-

takes-all choice mechanisms have been reported in perceptual

and probabilistic decision-making (Kim and Shadlen, 1999;

Yang and Shadlen, 2007).

Much of what we know about the neuroscience of

intertemporal decisions stems from non-human animal

research. To the authors’ knowledge, there is no direct evidence

from the animal literature to support this multiple-process

hypothesis, although the above cited study by Roesch et al.

(2006) may be interpreted in favour of this theory because of

the differences in the sensitivity of the distributed cell

populations to delay (‘short-term system’) and reward amount

(‘economic planning system’).

In general, animals are substantially more impulsive than

humans (Ainslie, 1974; Tobin and Logue, 1994; Green et al.,

1994, 1996, 1997; Stevens et al., 2004). This may point
towards a complete absence of a far-sighted choice system,

implying that the multi-system hypothesis only inadequately

captures animal behaviour. Alternatively, this disparity in

human and animal behaviour can also be attributed to

systematic differences in task configurations and require-

ments. Differences in experimental settings are likely to

affect the way future rewards are discounted, as evidenced by

a recent study that showed that the typically observed

discrepancy in impulsivity between humans and apes

disappears when tested with equal task parameters (Rosati

et al., 2007). Typically, there is a huge difference in the scale

of the delay spans used in human and animal research. The

delays in human research are usually in the range of weeks to

years or decades, whereas animal studies normally employ

delays in the seconds to minutes range (cf., Clayton and

Krebs, 1995, though, for very far-sighted behaviour in food-

caching birds). Because of this, human subjects almost never

experience the reward delivery during the course of the

experiment. Instead, they are mostly instructed to imagine the

delays. Animals in turn learn the delay lengths through

experience, hence through repeated exposure to the delay and

its end, as signalled by reward delivery. Imagining and

experiencing delay lengths and rewards may have substan-

tially different impact on reward valuation and discounting,

for example, by triggering different levels of impatience.

Moreover, whereas human subjects are usually rewarded with

a strong, but abstract secondary reinforcer, money, animals

receive a primary, appetitive reinforcer, usually food or

liquid. Primary and secondary reinforcements invoke

different psychological mechanisms, and recruit at least

partially different neural networks (Bassareo and DiChiara,

1999; Parkinson et al., 1999; Grimm and See, 2000; Gottfried

et al., 2002a, b; Estle et al., 2007).

To address whether the hypothesis of multiple systems in the

brain also holds when primary rewards are involved and the

delays are within the minutes range and actually experienced by

the subjects, McClure et al. (2007) replicated their earlier study

with human subjects, this time using fluid rewards and delays in

the range of minutes, not weeks or months. They found a very

similar activation pattern as in their 2004 study, and concluded

that the same multiple-system account that they used to

interpret their earlier results also applies when primary rewards

are involved at much shorter time delays.

4.9. Challenging the multiple systems hypothesis

McClure et al. (2007) used a complex experimental design,

and this complexity has to be considered when interpreting the

results. In each trial, subjects decided between a large, delayed

or a small, short-term fluid reward, and then received one or

multiple fluid squirts, depending on earlier decisions. In many

cases, the chosen reward in a given trial was only delivered

several (up to 60) trials and choices later, and the total amount

of fluid squirts received in a given trial was a composition of

rewards that could stem from the immediately preceding trial,

but also from several trials in the past. This design made it

difficult for the subjects to associate outcomes with choices,



Fig. 4. Blood-oxygen-level dependent (BOLD) activation of different brain regions during intertemporal decision-making in the domain of aversive events (A, Berns

et al., 2006), or in the domain of gains (B and C, McClure et al., 2004). (A) Effect of voltage and delay on BOLD responses in structures of the pain matrix, including

primary and secondary somatosensory cortex (SI and SII), caudal, middle and rostral anterior cingulate cortex (Caud, Mid and Rost), and anterior and posterior insular

cortex (Ant and Post). Although BOLD responses discriminated significantly between levels of shock intensity, there was no difference between high and mild
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and they certainly did not experience the delay lengths in the

same way as the animals did in the above-mentioned studies.

Because the authors were not interested in associative learning,

the difficulty in linking choices with outcomes does not

necessarily invalidate their interpretation. But, it was inherent

to the design that subjects often received fluid squirts

immediately after their choice that originated from several

choices in the past, even when they opted for delayed rewards.

It is, hence, uncertain in how far the subjects were anxious to

speed up the delivery of a reward if they received an immediate

reward anyway, and it is unclear to what extent the subjects’

decisions were actually guided by impatience, or other choice

mechanisms with short time horizons, in particular towards the

end of the experiment. Because short-run mechanisms are,

however, essential for the interpretation of the neural results

within the b–d-framework, we feel that it is at least a matter of

debate whether this study provided evidence for the multiple-

systems account of primary reward discounting.

A recent neuroimaging study by Glimcher et al. (2007)

provided further and more general challenge of the hypothesis of

multiple systems in the human brain. The authors reasoned that,

if the choice-determining utility function indeed results from

combining a very steeply discounting b-system with a less

steeply decaying d-system, then the curve of the actual utility

function should be somewhere in-between the b- and d-

functions. The critical test, hence, would be to show that the slope

of the discount function fitted to the BOLD signal of the limbic

areas believed to process the b-system is steeper than the slope of

the discount function derived from behavioural measurements.

Using a series of decisions similar to the ones employed in the

McClure et al. (2004) study, Glimcher et al. (2007) individually

measured the behavioural indifference points for different

rewards and delays, and obtained neural discounting parameters

by fitting discount functions to the BOLD signals of the limbic

areas believed to process the b-system.

As expected, the best fitting functions to both the

behavioural and neural data were hyperbolic, and not

exponential. However, the slopes of the neurally measured

functions on the single-subject level were not steeper than the

slopes of the behaviourally estimated functions, even when

immediate rewards were involved. Instead, both functions

corresponded surprisingly well. This suggests that the BOLD-

levels in limbic areas were linked to the actual behaviour, and

not to the over-impulsive short-range system, as hypothesised

by McClure et al. (2004, 2007).

In addition, Glimcher et al. (2007) reasoned that a short-term

b-system should only be activated when the choice set includes

an immediate or short-term gain, but not if all options in the set

were in the relatively far future. In line with previous studies,

the limbic regions believed to constitute the b-system were
dreaders. However, with the exception of the right SII, delay length had a different

Reprinted from Berns et al. (2006). Copyright 2006 with friendly permission from

immediately. PCC: posterior cingulate cortex; MPFC: medial prefrontal cortex; VS

were activated while making choices independent of delay. RPar: right intraparietal

cortex; LOFC: right lateral orbitofrontal cortex; VCtx: visual cortex; PMA: premoto

Copyright 2004 with friendly permission from AAAS.
activated when subjects chose the temporally more proximal

option, but this also held true when both outcomes were in the

relatively far future, i.e., when no instant gains were involved.

Hence, incompatible with the b-system interpretation of limbic

activation, activity in those structures seemed to be more

related to choices of ‘as soon as possible’ options than

immediate options.

Taken together, these results challenge the view that the

components of the multiple-systems theory can be mapped onto

separate systems in the brain. Because of this, and the lack of

evidence in animal research, we feel that the generality of the

multiple-system models in neuroscience remains questionable,

although we acknowledge that the ongoing debate could well be

decided in their favour, at least in humans.

In the next section, we will present an alternative,

biologically plausible model to account for temporal incon-

sistencies in choice. The model is based on the learning

literature and the implementation of learning rules in the brain.

In the model, time preference is treated as a unitary construct.

This means that we assume that reward utility is discounted

hyperbolically, and hyperbolic discounting holds even without

necessitating the influence of additional cognitive processes,

such as utility from anticipation, impatience, reluctance of

delaying gratification, or other multiple systems.

We justify treating time preference as a unitary construct by

referring to Occam’s razor. Because of the uncertainty about a

neural substrate of the multiple-system hypothesis, we feel that

neuroeconomic phenomena can be better accounted for by

simple learning rules than by assuming complex, sophisticated

reckoning, unless compelling evidence is provided to the

contrary (cf. Staddon, 2001; Barraclough et al., 2004). By no

means, however, do we attempt to rule out in principle the

possibility that time preference is a composite of several basic

constituent processes, as impatience, delay of gratification and

similar motives undoubtedly affect choice. We simply maintain

that hyperbolic discounting can be achieved even without

requiring multiple processes. We see our model as well as all

other computational models discussed in the next section as first

attempts to approach the issue of time preference. They can be

easily extended by adding extra computational processes in

future research.

Most of the learning literature on which the model is based

on originates from animal research. It is a relevant question

whether animal research can inform the science on inter-

temporal choice behaviour at all, given all the considerations

about likely species differences. We do think so. First,

economic decisions in animals are interesting in themselves,

and entire research areas are devoted to them, e.g., optimal

foraging theory. Second, as indicated, much of what we know

about the neural implementation of intertemporal decisions,
ial effect on BOLD responses of high and mild dreaders (see text for details).

AAAS. (B) Activated brain regions for choices in which money is available

tr: ventral striatum; MOFC: medial orbitofrontal cortex. (C) Brain regions that

cortex; DLPFC: dorsolateral prefrontal cortex; VLPFC: ventrolateral prefrontal

r area; SMA: supplementary motor area. Reprinted from McClure et al. (2004).
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reward processing and learning theory stems from animal

research. It is therefore straightforward to build intertemporal

choice theories on existing knowledge from the animal

literature. Third, animal research avoids many of the confounds

that are a frequent problem in human science, e.g., human

subjects’ choices may be biased by their hypotheses about the

aim of the experiments, the use of strategies of self-regulation is

more difficult to control in human than animal experiments,

task instructions may induce framing effects, choices may be

biased by the actual inflation rate whenever money is involved,

etc. Hence, because the confounds contained in this list are less

likely to influence animal than human behaviour, chances are

higher that animal experiments target a less biased time

preference. We are therefore convinced that animal science

provides highly valuable contributions to understand inter-

temporal choice.

5. Towards a neurocomputational model of

intertemporal choice behaviour

5.1. Delay discounting and neurocomputational modelling

In the previous sections, we discussed, among others, how

neuroscience can inform economics and psychology, i.e., in

how far behavioural models of intertemporal choice can be

validated with neuroscientific methods. Here, we attempt to

devise an alternative neuroscientific and biologically plausible

model of intertemporal choice.

The key to understand most anomalies discussed in Section

3 is to understand hyperbolic discounting. We postulate that the

question how hyperbolic discounting is neurally implemented

can be best approached by reducing it to the problem of reward

value updating in the brain: how is the temporally discounted

reward value computed and represented in the first place, how is

it updated when the waiting time to a reward increases, and,

most essentially, how is the subjective value updated

hyperbolically? These issues can be addressed with neural

mechanisms accounting for simple behavioural phenomena,

namely Pavlovian learning (Rescorla and Wagner, 1972). The

adoption of learning models as a foundation for intertemporal

choice behaviour is a straightforward and logical one, because

it would be hard to consider the updating of reward value as a

process fundamentally different from learning. By conse-

quence, all models presented below assume that animals will be

offered sufficient amounts of learning trials to update their

values appropriately, regardless of whether they pertain to

immediate or delayed rewards. In addition to flexibly updating

subjective reward values, an animal must also be able to predict

the values of the different response options in order to weigh the

options, and come to a categorical decision. Hence a viable

model must also account for how the reward value representa-

tions are invoked by external or internal events preceding the

choice, such as conditioned stimuli, cues, thoughts, action and

homeostatic variables. Once we have found a model that

explains the computation, representation and hyperbolic

updating of value representation, and its attribution to stimuli

or events preceding choices, it can be extended and generalised
to more complex situations, such as decisions involving

different cue and action values (Dayan and Balleine, 2002).

Because of hyperbolic discounting, our and also some other

considered models can explain preference reversals and the

common difference and immediacy effects. Furthermore,

because of the delay-sensitive valuation system, the choices

predicted by the models will follow a short-term rule which

results in the failure to maximise reward rate in intertemporal

choice situations in which trial lengths are equal.

However, because there is little evidence that rewards recruit

the same neural circuits and mechanisms as losses or aversive

events, we will restrict this section to the discussion of the

appetitive learning literature. This means that the deliberated

models cannot necessarily be extrapolated to intertemporal

choices in the domain of losses. Hence, the discussed models

are restricted to anomalies in the domain of gains, and they

cannot readily account for sign-effects, or the acceleration of

aversive events.

5.2. Temporal difference learning

Previously, models of neural systems computing reward

values based on learning experiences have been proposed in

various forms (e.g., temporal difference learning, TD; Sutton

and Barto, 1987; Sutton, 1988; Schultz et al., 1997), but these

have not specifically focused on explaining the intertemporal

choice patterns in animals and humans described above. In this

section, we will therefore briefly review some general

requirements and constraints on computing reward value in a

time-dependent manner and then focus on specific neural

models accounting for temporal discounting and preference

reversal.

A central concept in modelling choice behaviour is that

sensory cues, contexts and actions can acquire a certain time-

dependent value due to the associations of these inputs with

rewards or punishments received later in time. The general form

of a value function can be expressed as

Vt ¼ E½g0rt þ g1rtþ1 þ g2rtþ2 þ � � � � (8)

where Vt denotes the value that an animal associates with the

cues and context present at time t, E the expectation (or

prediction) of all rewards expected at the current time t and

in the future, as represented by the terms in the square brackets

(cf. Sutton and Barto, 1987; Schultz et al., 1997; however, the

definition of value function Vt used here is different from that in

Schultz et al., 1997). In this equation, rewards r are predicted to

occur at discrete moments in time (t, t + 1, etc.) and are

temporally discounted according to the g factors, which

decrease in magnitude as the temporal distance to t increases

(Sutton and Barto, 1987; Sutton, 1988). A neural system facing

the task of learning to make choices should be able to utilize

experiences involving temporal associations between neutral

environmental events and valuable outcomes in order to gen-

erate an accurate estimate of how much reinforcer will become

available in the future, and when in the future this will occur. If

the subject is confronted with multiple response options in the



Fig. 5. Schematic diagram of a general layout for a neural network architecture

performing intertemporal choice behaviour based on temporal difference

learning. The scheme departs from the situation where an organism faces

two environmental cues (CS1 and CS2) and must choose an action A or B to

react to these two cues. Following a neural stage where the physical features of

CS1 and CS2 are represented by the neural ensembles A and B in sensory

cortical areas, the CS1 and CS2 information is transmitted to two separate

neural ensembles A0 and B0, which each generate a value representation that

varies as a function of time (VA(t) and VB(t)). These ensembles convert sensory

input into an evaluative signal and are hence termed ‘sensory-evaluative’. The

efferent fibers from ensembles A0 and B0 are routed both towards a decision-

making network which will favour the action associated with the highest current

value (VA(t) and VB(t)), and towards a reinforcement-processing module (RPM).

The RPM first computes the first differentials DVA(t) and DVB(t) as a function of

time, as indicated by the operation ‘‘DIFF’’. At a neural level, this operation

corresponds to converting the tonic outputs from the ensembles VA(t) and VB(t)

into phasic signals. Next, the RPM performs a comparative operation (‘‘COM-

PARE’’) by summing the DVA(t) and DVB(t) signals with the signal representing

the actual reward at time t. The resulting error signals eA and eB are next fed back

to the sensory-evaluative ensembles A0 and B0, and are necessary to enable the

network to learn to predict future reinforcement and to improve decision-

making. The ensembles A0 and B0 may be located in the same brain region

(indicated by the dotted ellipse) or in different brain regions. Note that the

implementation of this general scheme is not based on a particular transmitter

system mediating the error feedback, such as dopamine or glutamate.
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situation at hand, reward estimates can be computed for each

relevant environmental event or context. Reward quality is not

considered separately from quantity in the current model, nor is

the impact of negative reinforcers on learning explicitly con-

sidered, although both of these aspects could be included in

more elaborate versions. Eq. (8) can be changed to the follow-

ing equation:

Vt�1 ¼ rt þ gVt (9)

which states that the value function V at time t � 1 is computed

as the reward occurring directly at time t (rt) added to the

(discounted) sum of all future rewards expected to occur later

than t (Sutton and Barto, 1987). The use of an E[. . .]-term can

be omitted from the equation since the reward rt occurs at

moment t of evaluation, and V is expectational by definition.

Eq. (9) will only hold in the case of perfect reward prediction,

i.e., when the animal’s value function at time t � 1 exactly

matches the reward arriving one time step later and the sum of

all expected future rewards. In cases of mismatch between

actual outcome and prediction an error term dt can be computed

by bringing Vt�1 to the right-hand side of the equation:

dt ¼ rt þ gVt � Vt�1 (10)

In TD learning (Sutton and Barto, 1987; Sutton, 1988), the

error in reward prediction dt will be larger than zero at time t if the

reward occurring at t is larger than predicted by the term

(gVt � Vt�1), such as when a naive animal unexpectedly

encounters a reward whilst not having learned yet that it is

regularly preceded by a conditioned stimulus (CS). Similarly, dt

will be negative if an expected reward does not occur. Moreover,

error terms can be computed even before the neural system has

perceived an actual reward in a given trial. This happens when

there is a moment-to-moment change in value function so that

(gVt � Vt�1) is different from zero. Thus, not only does dt provide

a prediction error signal upon receiving a reward, it can also

deliver a ‘surrogate prediction error’ (Schultz et al., 1997) when,

for instance, a relevant CS or action occurs.

The TD-learning model has a remarkable formal resem-

blance to the firing properties of dopaminergic neurons in the

monkey ventral mesencephalon (cf. Schultz et al., 1997;

Hollerman and Schultz, 1998) and several neural architectures

have been proposed for representing and computing the

quantities of Eq. (10) (Schultz, 1998; Beiser et al., 1997;

Montague et al., 1996; Montague and Berns, 2002; Daw and

Doya, 2006). Generally, we hypothesize value representations

Vt to be generated by higher-order associative brain areas that

process sensory input pertaining to the identity of conditioned

stimuli and convert this information into reward-predicting

neural signals. Such areas will be referred to as ‘sensory-

evaluative’. In a TD-learning scheme, their representational

output is subjected to a discounted temporal-differentiation

operation to compute (gVt � Vt�1) and emitted to one or more

target areas; the differentiation may take place either within the

sensory-evaluative area or in the target area. When this

differentiated output signal, reflecting the moment-to-moment

change in reward prediction, is then summed in the target area

with an input reporting the actual reward value rt, the
discrepancy (error) between actual and predicted reward can

be computed (Eq. (10); Fig. 5). Once this error term is available,

it can be broadcast into the sensory-evaluative brain regions to

guide further learning of CS-reward associations and it can be

emitted to brain structures for decision-making and response

execution.

Due to its presumed function in guiding learning, dt is

considered a (scalar) ‘teaching signal’ and a computationally

efficient learning rule capturing this role in a multi-layer neural

network is given by:

Dwi j;t ¼ cdtai;ta j;t (11)

where Dwi j;t denotes the change in the synapse from presy-

naptic neuron j to postsynaptic neuron i in a single- or multi-
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layered network at time t, c is a learning rate constant and ai,t

and aj,t represent the (firing) activity of the post- and presy-

naptic neuron at time t, respectively (cf. Sutton and Barto, 1987;

Schultz et al., 1997; Schultz, 1998; Montague et al., 1993;

Pennartz, 1996; note, however, that no postsynaptic term ai,t

was included in the original TD-model of Sutton and Barto,

1987). This rule may be applied to multi-layered networks in

sensory-evaluative as well as executive brain areas.

Since its original development in the field of robotics and

control theory, TD-learning has gained significant merit, not

only in neuroscience but also due to its broad applicability to

cognitive problems both in psychology and artificial intelli-

gence (e.g., learning to play backgammon with TD-gammon,

Tesauro, 1994). Especially noteworthy in the present context is

the ability of TD-models to mimic a number of phenomena

encountered in conditioning paradigms, such as blocking,

inhibitory backwards conditioning, stronger conditioning

induced by forward CS–US pairings rather than simultaneous

CS–US presentation, second-order conditioning and the

formation of novel associative chains (Sutton and Barto,

1981, 1987, 1990; Malaka and Hammer, 1996; Suri, 2001;

Seymour et al., 2004).

At this point, an important distinction should be made

between the general computational principles pointed out

above, such as the concept of a value function and an error in

reward prediction on the one hand, and on the other hand the

specific implementation of these concepts in a particular model

and learning rule (i.e., TD-learning) and their attribution to

particular neural systems (i.e., the midbrain dopamine system

with its set of afferent and efferent connections and structures).

Because it is, for instance, empirically uncertain whether

dopamine will affect synaptic plasticity bidirectionally as

predicted by Eq. (11), or which forms of reward-dependent

learning are driven by dopamine, it is important to realize that a

learning system for reward prediction may implement the

general concepts by other means, using different algorithmic

rules and different architectures (cf. Pennartz, 1996). To

illustrate this, a neural architecture for reward prediction

learning has been constructed that avoids a ‘triadic’ learning

rule (Eq. (11)) and instead uses Hebbian modification of

glutamatergic synapses with adaptive plasticity thresholds (the

Hebbian synapses with adaptive thresholds-, or HSAT-model;

Pennartz, 1997). This model employs glutamatergic projection

neurons to convey actual reward values as well as reward-

predictive signals, in agreement with the glutamatergic nature

of pyramidal neurons throughout the neocortex and additional

structures implied in evaluation, e.g., the BLA. As in a

dopaminergic instantiation of reinforcement learning, cortical

and amygdaloid neurons are presumed capable of representing

reward values upon arrival of predictive sensory cues, as

reviewed above, and local microcircuitry either within these

sensory-evaluative areas or in target areas is assumed to carry

out a differentiating operation to compute moment-to-moment

fluctuations in reward prediction. Hence, besides the sensory-

evaluative modules in the general scheme of Fig. 5, the error-

computing module may be considered dopaminergic or

glutamatergic and cortical or quasi-cortical (BLA) in nature.
5.3. Neural implementations of a discounting function: TD

model

Let us next consider how a hyperbolically decaying discount

function, as an exemplar accounting for intertemporal

preference reversals, may be implemented in an efficient and

neurobiologically realistic fashion. It is straightforward to

compute the g-factors in Eq. (8) according to a hyperbolic

decay:

g t ¼ g0

1þ kt
(12)

where gt is the discount factor at time step t relative to an initial

moment t = 0, k a positive constant regulating the rate of decay

and g0 the discount factor at time t = 0 (see also Eq. (6)). Other

decay functions can be used that will result in a steep and

asymmetric decay and preference reversal (i.e., cross-over in

two value functions for choice options with rewards at different

delays).

However, it is less straightforward to point to a prime

candidate neural mechanism imposing such a function on the

weighing of temporally proximal versus distal events. Below

we will evaluate four possible mechanisms bearing relevance

both for a ‘dopaminergic’ and ‘glutamatergic’ (or still other)

neural implementation.

Let us first consider whether the TD-model may offer a

plausible neural implementation for appropriately weighing

temporally proximal versus distal events. Throughout each trial

the TD-learning rule (Eq. (11)) will be continuously applied

within the network, even if no predictive CS or reward is

presented; weight changes will be induced whenever a positive

or negative prediction error signal coincides with pre- and

postsynaptic activity and this can already occur when gVt

differs from Vt�1 (Eq. (10)). In the learning rule, the discount

rate g is only applied to the most recent value Vt but not to the

previous value Vt�1. By itself, such a discounting mechanism

may be neurally implemented by computing a phasic signal

assigning a slightly higher amplitude (if, e.g., g � 0.95) to the

previous value Vt�1 than the current value Vt, which is possible

using, e.g., feed-forward inhibition. There is, however, a more

fundamental problem in seeking a straightforward neural

implementation. When a CS occurs, the model assumes that

this event will be represented by many different synaptic

weights, one for each time point following CS presentation.

Thus, an expanded ‘time register’ would be set up for each CS

in a time-discrete manner, such that each time point of each CS

is assigned its own, specific reward-predicting weight. Under

this scheme of a ‘serial-compound stimulus’ (Sutton and Barto,

1987), a CS is represented as a long vector of signals, each of

which represents the cue at a different time interval into the

future. Given the evidence in favour of temporally graded

neural representations for coding of motivational value and

time intervals (Watanabe, 1996; Tremblay and Schultz, 1999;

Komura et al., 2001; Montague and Berns, 2002; Durstewitz,

2003; Kalenscher et al., 2005a, b, 2006b; see further below),

such a time-discrete register cannot be considered neurobio-
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logically realistic. For instance, neurons in sensory or higher-

associational areas do not respond to sensory stimuli in a block-

like, time-discrete manner, at the same time representing a

multitude of time delays for one and the same sensory stimulus.

Representing each and every stimulus by a long vector of

signals across a range of time intervals would pose enormous

demands on neural coding and storage capacities, which are

large but not endless. This problem may be overcome if more

biologically plausible stimulus representations will be identi-

fied to provide time-specific CS-value signalling required for

TD-learning. Thus, the problem in implementing an appro-

priate discount function by TD-learning may be more related to

the way stimuli are represented than to a fundamental limitation

of the rules that govern the dynamics and learning in TD-

models.

5.4. Neural implementations: climbing-firing profile

Instead of applying a TD-model, it is worth considering

whether ramping or ‘climbing’ firing profiles of neurons in

limbic and striatal structures may provide a neural mechanism

for implementing an appropriate temporal discount function.

As outlined in Section 4.2, many reward-related structures,

including OFC, cingulate cortex, amygdala and striatum,

contain large subsets of neurons displaying upward ‘ramps’ in

firing rate, with their onset usually shortly after a CS and their

peak rate just in advance of the reward or motor action resulting

in reward (Fig. 6B; Niki and Watanabe, 1979; Schultz et al.,

1992; Watanabe, 1996; Quintana and Fuster, 1999; Rainer

et al., 1999; Tremblay and Schultz, 1999; Brody et al., 2003;

Kalenscher et al., 2006b). Contrary to a decaying eligibility

trace which partly retains cue information as time elapses (see

Section 5.5), an upward ramp in firing rate may be thought of as

a ‘forward’ trace specifying the temporal proximity to a

reinforcer. In their predictor-valuation model that aims to

explain how reward predictors acquire value, taking into

account both the uncertainty of a future reward and the risk of

allocating computational resources to a predictor of the reward,

Montague and Berns (2002) proposed this escalating increase

in firing rate as a neural mechanism for a valuation function.

However, if a climbing-firing profile represents a temporally

discounted value of some reward predictor that has the capacity

to guide decision-making, a problem with this mechanism

would be that the mean firing rate is usually at or close to zero at

the moment of CS presentation. Animals are clearly able to

choose between two CSs as they are presented, and thus their

neural systems must be able to quickly retrieve their reward

values from memory and represent them actively. Thus, ramp

functions emerge too slowly in time to enable decisions at the

time of predictor presentations. A second problem for ramp

functions is that in many climbing-firing profiles the mean

firing rate usually drops towards zero shortly after or even

before reward delivery. Regardless of the precise learning rule

used, it is essential that neural activity signalling actual reward

coincides in time with active neural representations of reward-

predictive value. Eq. (11) illustrates this principle by computing

weight changes from the product of the error in reward
prediction, a term including actual reward (Eq. (10)), and of

pre- and postsynaptic activity, involved in value representation.

If the information on actual reward only arrives after the value

representation has collapsed, synaptic modifications in the

value-representing network cannot be guided by real-world

reinforcement.

Instead of a function of climbing-firing profiles in

temporally discounted value representation, we adopt the view

that these profiles serve a more general function, viz. the coding

of time intervals in between behaviourally important events

such as CSs and outcomes. The idea that a neuron’s

instantaneous firing rate can be used to code the time elapsed

since stimulus presentation and the time remaining until trial

outcome has been elaborated in neural integrator models for

prediction of interval times (Durstewitz, 2003). As explained

above, one of the predictions from these models holds that the

rising rate of climbing functions may be flexibly adjusted,

which has been confirmed by experimental observation of such

adjustments when CS-reward timing intervals change during

learning (Komura et al., 2001; Kalenscher et al., 2006b).

5.5. Neural implementations: eligibility trace

A second mechanism for weighing temporally proximal

versus distal events is illustrated in Fig. 6A and concerns the

possibility that information about neutral sensory events is

temporally stored in a neural structure by inducing an

‘eligibility trace’ (Sutton and Barto, 1987). First we note that

the initial storage of CS information before arrival of a

reinforcement after a time delay is a general requirement for all

conditioning processes that span considerable time intervals,

regardless of its precise form, dynamics or mechanism. Second,

the neural substrate of such a trace can be envisaged as, for

instance, an elevation of the intracellular pre- or postsynaptic

concentration of a second messenger (e.g., cAMP) or the degree

to which a synaptic protein, relevant for long-term plasticity

that may ensue in a subsequent phase, is phosphorylated (e.g., a

subunit of the NMDA receptor, or Ca2+/calmodulin-dependent

protein kinase II, CaM kinase II; Rosenblum et al., 1997;

Sweatt, 2001; Lisman et al., 2002; Nakazawa et al., 2006;

Gervasi et al., 2007). When a CS occurs at time t = 0 (Fig. 6A),

the trace is first presumed to peak rapidly and then, following

CS offset, decay back towards baseline level. The strength of

the trace represents the time-dependent activity value aj,t (or

ai,t) pertaining to a CS or context (cf. Eq. (11)), and its decay

implements discounting. If a rewarding event subsequently

occurs at a time t = D when the strength of the trace is still

significantly elevated above baseline, the trace-activated

synapses will undergo a long-term modification according

to, e.g., the HSAT learning rule for reinforcement learning.

Such discounting by trace decay could be broadly applicable to

learning models, although in the TD-model a discount

mechanism was already incorporated in the computation of

errors (Eq. (10)).

At present, an eligibility-trace mechanism for implementing

temporal discounting seems a neurobiologically plausible

model, although admittedly there is little experimental



Fig. 6. Three possible neural mechanisms for weighing the relative value of temporally distal vs. proximal events. Such mechanisms are postulated to be part of

models of intertemporal choice behaviour because of the requirement to assign a lower motivational value to delayed as compared to temporally proximal reward. A

requirement for these mechanisms is that they can generate a time-dependent asymmetric, hyperbolic decay in event value in order to account for reversal of choice

preference. (A) Climbing firing profiles, such as encountered in limbic, cortical and striatal structures, are characterized by a slow increment in firing activity that is

initialized around the moment of CS occurrence (t = 0) and is terminated around the time the animal undertakes an action (t = tM) or a reward is delivered (t = tR). The

time-dependent firing rate of the neuron can be taken to represent the strength of a trace coding the relative value assigned to events occurring in advance of the reward.

The value is constantly increasing due to the continuously decreasing residual waiting time, and hence increasing temporal proximity to a predicted reward while

waiting for it. The black and grey curves illustrate climbing firing profiles with end points locked to the motor event (black curve) or reward (grey curve), respectively.

(B) An ‘eligibility trace’ may correspond to a biochemical signal in the pre- or postsynaptic elements of a set of neurons that rapidly reaches its peak strength once the

reward-predicting event (CS, at time t = 0) occurs and subsequently decays steeply towards baseline level. The value assigned to CS will be determined by the trace

strength that remains at the time D the reward occurs. (C) A ‘reverse replay’ scenario is conveniently explained by distinguishing three levels of event processing: at a

first stage (C1), the physical features of relevant events (CS1–CS3) are represented in sensory cell ensembles (see also Fig. 7). The graph plots three events across

time, with CS1 being the earliest event and CS3 the one most proximal to reward. The order of the CS occurrences is reversed since the model assumes that these

events are replayed backwards in time. The peak firing rates have been normalized across all predictive events. Hence, CS3 occurs earlier on the time axis with respect

to reward occurrence than CS2 and CS1. Graph C2 represents the strength of a reinforcement signal as a function of time, with the reward occurring as indicated by the

arrow. Note that all panels (C1–C3) are temporally aligned with one another, so that the reward signal can be seen to be initiated shortly before the replay of the CS3-

representation. In C2, the decay of the reinforcement signal assumes an asymmetric, hyperbolic shape. C3: if the time-dependent values of the physical CS-

representations (C1) are essentially multiplied with the strength of the reinforcement signal applicable to the corresponding moments in time (C2), an appropriate

weighing of the various CS events can be obtained. An essentially Hebbian learning rule may suffice to perform this multiplicative operation (Eq. (13), see text).
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evidence that clearly argues in favour of hyperbolically

decaying neurochemical traces. Although steeply decaying

transients in pre- or postsynaptic [Ca2+] and cAMP or other

second-messenger traces have been reported (Hempel et al.,

1996; Scheuss et al., 2006; Majewska et al., 2000), their exact

decay dynamics at the relevant sites of synaptic modification

remain to be resolved and it is questionable whether the

longevity of such traces is sufficient to span time intervals that

are relevant to the time scale of delayed reward effects on
behaviour. Phosphorylation of CS-activated pathways may

provide a more appropriate temporal dynamics, but little is

known about the exact decay dynamics at behaviourally

relevant time scales. A potential problem with this model is that

synaptic weight changes tend to be effectuated by short-latency

interactions between pre- and postsynaptic elements, ranging in

the order of 20–100 ms (Levy and Steward, 1983; Markram

et al., 1997; Bi and Poo, 1998). This disadvantage would not

apply if a neural mechanism could be identified that is able to
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pack relevant CS- and reward-related information tightly

together in time and uses well-known principles of Hebbian

synaptic plasticity applicable to short time frames. Another

disadvantage of a trace mechanism is that the storage of

relevant one-shot associative experiences (e.g., pairing taste to

nausea in conditioned taste aversion) depends on a singular

mnemonic event without the benefit of rehearsal. Although a

potential mechanism with this capacity is indicated below, it

should be stressed that an eligibility trace-model remains a

possible and perhaps plausible mechanism for temporal

discounting as well.

5.6. Neural implementations: reverse replay

A fourth mechanism (Fig. 6C) for appropriate temporal

discounting refers to a recent suggestion that, following an

initial learning experience during bidirectional track-running

for food reward, firing patterns characteristic for this experience

can be replayed off-line and in reverse temporal order (Foster

and Wilson, 2006). Traditionally, replay is viewed as the

spontaneous recurrence, during periods of rest or sleep (‘‘off-

line’’ states), of neural activity patterns that are characteristic of

behavioural experiences preceding the rest-sleep period.

Because of the high degree of specificity of pattern replay

and the preservation of temporal-sequence information

displayed by ensembles during behavioural experiences, replay

is considered an important candidate mechanism for mediating

memory consolidation (Skaggs and McNaughton, 1996;

Nadasdy et al., 1999; Lee and Wilson, 2002). In contrast to

forward replay occurring particularly during slow-wave sleep,

Foster and Wilson (2006) discovered a temporally reversed

replay in the awake state, particularly during ripple-sharp wave

complexes, flanking or overlapping reward consumptions

intermittently occurring during track running. These results

have fuelled the hypothesis that reward-dependent memory

consolidation may rely on a time-compressed reiteration of

place- and event-related information (Pennartz et al., 2002),

accompanied by a time-weighed reinforcement signal such as a

transient, steeply decaying release of a neurotransmitter, e.g.,

dopamine (Berridge and Robinson, 1998, 2003; Schultz, 1997,

2002, 2004; Schultz et al., 1997; Tobler et al., 2005) or

glutamate (Pennartz, 1997; Pennartz et al., 2000; Lavin et al.,

2005; Seamans and Yang, 2004). Further support for this

hypothesis has come from evidence for reactivation in the

ventral striatum, which has been observed selectively in

neuronal subgroups that show modulation of their firing rate in

close association with hippocampal ripple-sharp waves

(Pennartz et al., 2004). If it is assumed that the reverse replay

commences with a peak in reinforcement signal (Fig. 6C) as

well as with the neural activity representing the event most

recently experienced during preceding active behaviour, and

furthermore, that the replayed event representation becomes

associated with the value conveyed by the reinforcement signal,

then it can be seen how events temporally more and more

remote from the reinforcement (but now replayed backwards in

time) are associated with a possibly hyperbolically decreasing

reinforcement signal. Thus, the discount function is imposed by
the forward-temporal decay of the reinforcement signal,

coupled to a backward-temporal, compressed replay of context-

and event information, so that temporally remote events are

associated with a lower value than temporally proximal events.

Although modelling the kinetics of such a reinforcement signal

is underconstrained, a steep and asymmetric decay function

resembling a hyperbolic decrease is not implausible from a

neurobiological viewpoint. For instance, the reinforcement

signal may be expressed by the release of a transmitter, e.g.,

dopamine, followed by its diffusion to receptors, active re-

uptake and/or breakdown in the extracellular space. In the case

of dopamine, transient peaks in [DA]e in striatum as gauged

with fast-scan voltammetry suggest steep, possibly hyperbolic

decay kinetics (Heien et al., 2004), which is confirmed by

computational modelling of spatiotemporal patterns of diffu-

sion and re-uptake processes of dopamine in the striatum

(Cragg and Rice, 2004). Similar diffusion, re-uptake and

turnover schemes are likely to hold for other types of

neuromodulators, some of which are likely to cover different

time scales than dopamine. A potential problem in this type of

discount mechanism may be the limited time span of the

behavioural sequence that can be replayed in reverse, despite

the fact that temporal compression of the sequence representa-

tion likely occurs (Kudrimoti et al., 1999; Nadasdy et al., 1999;

Lee and Wilson, 2002; Foster and Wilson, 2006). Another point

of concern is that reverse replay has thus far only been

demonstrated for the hippocampus, while our hypothesis

extends the phenomenon to other brain areas. While it indeed

needs to be examined whether reverse replay can be generalized

to other brain structures, we do note that replay in

extrahippocampal areas has at least been shown to be

temporally coordinated with the hippocampus (Qin et al.,

1997; Pennartz et al., 2004; Ji and Wilson, 2007; Lansink et al.,

2007).

In addition to dopamine, glutamate has also been suggested

as carrying reinforcement information, as indicated above

(Pennartz, 1997; Pennartz et al., 2000). At first glance,

implementation of a glutamatergic reinforcement signal

appears unlikely under the scenario of reverse replay, since

the diffusion and uptake kinetics for glutamate release range in

the order of milliseconds (Keller et al., 1991; Hestrin, 1992;

Silver et al., 1992). However, a longer lasting decay of

reinforcement signal may be obtained in other ways than purely

by transmitter diffusion, uptake or turnover. The time course of

the signal can also be sculpted by the firing patterns of

reinforcement-signalling neurons. In this context, it is striking

to note that many single-cell firing-rate responses to reinforcers

in structures such as the OFC, amygdala, cingulate and mPFC

and striatum can be quite long-lasting, with their onset usually

at or shortly after reinforcer delivery and with variable time

courses lasting hundreds of milliseconds up to more than 10 s,

outlasting the ingestion phase (Niki and Watanabe, 1979;

Apicella et al., 1991; Shima and Tanji, 1998; Mulder et al.,

2003; Roitman et al., 2005; Van Duuren et al., 2007). These

post-reward responses could not be attributed to particular

motor behaviours of the animal, such as licking. The rate and

curvature of the decay in post-reward firing varies from neuron



Fig. 7. Model for temporally discounted reward learning using reverse replay

and Hebbian modification: network diagram implementing the reverse-replay

operations laid out in Fig. 6C. As in Fig. 5, we only assume the processing of

two stimuli for reasons of simplicity, CS1 and CS2, that are processed by two

sensory ensembles A and B representing their physical features. In this example,

CS1 occurs first in time, followed by CS2 and subsequently by the reward

represented by R(t). The outputs of A and B, aCS1 and aCS2, are fed into the

sensory-evaluative ensembles A0 and B0 which generate time-dependent value

functions, VA(t) and VB(t), as their outputs. These value signals are used by the

decision-making network to choose an action A or B, e.g., to approach CS1 and

neglect CS2. Similar to the general scheme of Fig. 5, a reinforcement-proces-

sing module (RPM) transmits reinforcement signals to the evaluative ensembles

A0 and B0 on the basis of its reward input R(t), but different from Fig. 5, the value

signals VA(t) and VB(t) are not fed into the RPM. In reverse-replay mode, the

CS-related information (aCS1 and aCS2) is regenerated in reverse temporal order,

so that aCS2 is temporally coupled to a relatively strong reinforcement signal

(aR) and aCS1 to a relatively weak one, as illustrated in the graph inside RPM

with hyperbolic curve. A Hebbian learning rule (Eq. (13)) is used to convert

these temporal couplings into appropriate weight changes in the ensembles A0

and B0.
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to neuron, and thus far it has not been investigated what type of

decay is displayed by the overall population response of these

neurons. If these prolonged reward-responsive neurons have a

reinforcement-signalling capacity, and they are accompanied in

time by event- and place-related firing patterns generated in

advance of a relevant outcome, temporally discounted learning

can be realized by reverse replay under this scenario. Thus, if a

forward-decaying reinforcement signal, now constituted by the

firing rate-profile of reward-responsive cells in neocortical and

amygdaloid areas, would be reactivated together with a

reversely replayed sequence of events (CS3, CS2 and CS1 in

Fig. 6C), an appropriate temporal discounting of events may be

achieved.

5.7. A model of intertemporal choices based on reverse

replay and Hebbian learning

In conclusion, the first two mechanisms reviewed above –

TD-learning with discrete time registers and climbing functions

– have distinct disadvantages in terms of neurobiological

plausibility or learning efficiency. The third mechanism, an

eligibility trace holding CS-related information, may be

considered plausible, but currently lacks empirical support

and has disadvantages in terms of efficacy. A ‘reverse-replay’

scenario may at present be considered the most promising

candidate mechanism, even though the phenomenon should be

scrutinized much more deeply.

Fig. 7 presents an overall scheme capturing the main

elements of the model as laid out above, and integrating these

with additional elements for intertemporal decision-making.

The scheme departs from the presentation of two conditioned

stimuli (CS1 and CS2) coupled to different rewarding outcomes

at different delays. The model only includes an evaluation of

the reward parameters amount and temporal proximity to the

CS, while other parameters such as reward probability are left

out for simplicity. Above we already touched upon the as yet

undecided question of whether reward amount and temporal

proximity may be integrated into a common neural representa-

tion capturing both of these aspects (‘‘common currency’’), or

whether these parameters may be separately represented in the

activity of different ensembles. Acknowledging the remaining

uncertainty on this issue and the possibility of different short-

and long-run systems (McClure et al., 2004), Fig. 7 assumes an

integrated representation. At the top end, two ensembles A and

B involved in the sensory processing of CS1 and CS2 are

shown; these ensembles represent the physical, non-motiva-

tional properties of the stimuli, whereas the lower groups of

neurons represent sensory-evaluative ensemble A0 and B0

responsive to CS1 and CS2, respectively. A0 and B0 will process

the CS1 and CS2 inputs from the overlying sensory areas to

generate as output their reward-predicting value functions VA(t)

and VB(t), which are propagated to a downstream decision

network. In a first, straightforward implementation of the

scheme (Fig. 7) the ensembles A0 and B0 are trained to generate

appropriate values because their input synapses are modified to

represent a running average of reward value. This training can

occur because the postsynaptic neurons in A0 and B0 not only
receive CS-information from the overlying sensory ensembles

but also the reinforcement signal, emitted by a reinforcement-

processing module depicted as the rightmost unit in Fig. 7, and

assuming a steeply peaking, slowly decaying form (Fig. 6C).

The following equation suffices as a basic learning rule:

Dwi j;t ¼ aar;ta j;t (13)

where wi j;t is the weight of the connection from neuron j onto i

at time t, a is a rate constant scaled between 0 and 1, ar,t the

activity of the reinforcement signal emitted by the reinforce-

ment processing module (RPM) and reaching the postsynaptic

cell i at time t, and aj,t the activity of the CS-representing signal

from the sensory ensemble A reaching postsynaptic cell i in A0,
which can be normalized to 1 if the CS is occurring (otherwise

aj,t = 0). According to Eq. (13), weight changes in the sensory-

evaluative area (Fig. 7) are directly dependent on the product of

the neural activity representing the reinforcement signal and the

CS. Despite the temporal separation between the CS and

reinforcement, the two signals can be associated because the

reinforcement signal decays slowly over time, as shown in

Fig. 6C (middle panel). Thus, at the moment that a particular

CS (e.g., CS2 in Fig. 6C) is reversely replayed, weight updating
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will start to occur for that particular CS proportional to the

strength of the corresponding CS-representation and propor-

tional to the strength of the reinforcement signal at the same

point in time. To enable asymptotic learning in the network, the

reinforcement signal ar,t is representing the unexpected (rather

than absolute) amount of reward, or equivalently, the difference

between the actual amount of reward minus the mean amount of

previously received reward given a CS (cf. Pennartz, 1997).

If the sensory afferents as well as projections from RPM are

glutamatergic, this learning conforms to a Hebbian scheme on

account of the following. First, the signal aj,t provides a

presynaptic component but also evokes a basic depolarization

of the postsynaptic neuron. The reinforcement signal will

provide an additional depolarizing component and the

magnitude of this component will determine whether the

synapse will be strengthened (long-term potentiation, LTP) or

weakened (long-term depression LTD; Pennartz, 1997). If

ar;t >wi j;t then LTP will be induced, whereas LTD occurs when

ar;t <wi j;t. This form of value learning is achieved by a reverse

replay of CS1–CS2 sequences in the ensembles A and B, as

well as A0 and B0, coupled to a steeply peaking and slowly

decaying reinforcement signal broadcast to all cells in A0 and

B0.
In a more elaborate version of this model, errors in reward

prediction, including surrogate prediction errors (Eq. (10)), can

be computed to enable backwards referral of value information

as is the case in TD-learning. This variant contains the same

sensory-evaluative ensembles and decision network as in Fig. 7,

but now the values VA(t) and VB(t) are continuously fed from

ensembles A0 and B0 not only into the decisional network, but

also to the RPM, which differentiates these inputs (i.e.,

calculates VA(t) � VA(t � 1), etc.), subsequently adds this

difference to the actual reward rt and emits the result of this

computation, the error in reward prediction, towards ensembles

A0 and B0 (cf. Fig. 5). Again, the CS1–CS2 sequences are

replayed in reverse in the ensembles A and B and A0 and B0,
while the error signals are expressed as steeply peaking and

decaying transients in, e.g., dopamine release. Note that any

form of replay is only possible when an initial, short-term

storage of stimulus and reward information has taken place at

the time of the original behavioural experience.

The net result of the learning operations sketched above is

that VA(t) and VB(t) come to represent the discounted reward

values of CS1 and CS2, respectively. When these signals are

propagated into the decisional network, the selection principles

at work within this module, such as a winner-take-all

mechanism, will lead the animal to favour a particular action

(e.g., ‘approach CS1’) over another one (e.g., ‘approach CS2’),

based on the different strengths of VA(t) and VB(t).

Admittedly, this model is quite elementary and will need

to be elaborated further to account for the richness of findings

on intertemporal decision-making. Additional capacities

must be attributed to the decisional network to render it

functional, such as an ability to suppress or withhold motor

actions upon instruction by additional cues. Furthermore, in

Fig. 7 decisions have been placed under the control of

Pavlovian processes attributing value to initially neutral
stimuli, whereas there is extensive behavioural and neuro-

physiological evidence for separate representation of action

values (Dayan and Balleine, 2002; Mulder et al., 2003;

Samejima et al., 2005). A more complete model should also

be capable of performing additional computations to account

for habit-based influences on decision-making and modula-

tion of reward, action and stimulus valuation by the animal’s

motivational state. Advancement of the field can be expected

particularly when such modelling and simulation efforts will

be paired with behavioural, neurophysiological and pharma-

cological studies on replay phenomena and intertemporal

decision-making.

6. Summary and outlook

In this review, we show that virtually all species examined

thus far discount temporally proximal events stronger than

temporally distant ones. This results in a typical choice pattern

that frequently yields suboptimal outcomes and is in violation

with several axioms of DUT, including the assumptions of

stationary preferences, consistent preference orders and utility

maximisation. Although the two crucial parameters influencing

intertemporal decisions, delay and reward amount, are

processed in many different parts in the brain, the search for

a time-varying, hyperbolically discounted value signal has not

yet yielded conclusive results. Whereas some studies indicate

that the discounted reward value is represented on a single-cell

level as an integrated function of reward amount and delay

(‘‘common currency’’), other experiments suggest it is

represented on a population level, and even other studies

imply that intertemporal decisions are the result of multiple

competing and interacting processes distributed across many

different brain regions. Future research needs to address more

systematically if, where and how in the brain delay and reward

information are integrated into a discounted value representa-

tion.

Many of the existing models of classical and operant

conditioning are, in their present form, insufficient to explain

how time-discounted reward values are updated in the brain,

how they are attributed to reward-predicting cues, and how an

animal makes its choice. In addition to the possibility of steeply

decaying ‘eligibility traces’, we propose a new, simple and

biologically plausible model that assumes that task-relevant

reward- and CS-features, including the delay between CS and

reward, is reversely replayed during rest. We further maintain

that a steeply decaying reinforcement signal (e.g., dopamine or

glutamate), whose amplitude is scaled to reward amount,

coincides with the reversely replayed CS-information, resulting

in the association of higher value to temporally proximal cue-

representations than to distal events, and to cues predicting

larger vs. smaller rewards. This allows an animal to assign

delay- and reward-dependent value to the reward-predicting

cues, and make its choice between outcomes with different

delays. The model does not exclude other mechanisms,

embodied by one or some of the other proposed models, to

be at work at the same time, performing either supplementary

functions or working in concert with reverse-replay operations.
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This model makes several predictions that need to be tested

in future studies. In addition to further research needed to

elucidate general features of reinforcement learning, e.g., the

nature and origin of reinforcement signals, it will be necessary

to show that
1. C
S-reward information is indeed replayed in reversed order

during rest while relative delay information is preserved,

possibly in a time-compressed manner.
2. R
everse replay happens in more dopaminergic/glutamatergic

target regions than only hippocampus, e.g., ventral striatum,

amygdala or OFC.
3. T
he timing of reinforcement signal onset and the onset of

replay is coordinated: the replay happens in the awake

condition shortly after reward delivery, allowing the

reinforcement signal to coincide with the replay of CS-

representations.
4. B
locking the transmitter/receptor systems mediating CS-

information or the reinforcement signal during the replay-

period should abolish learning and learning-dependent

preference reversals.

The neuroscience of intertemporal decisions is only at its

starting point. But already now, it adds a valuable contribution

to the empirical investigation of this type of choice behaviour.

We hope that the insights gained in this new field will inform

psychology, economics and biology as much as it has benefited

from these disciplines.
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Van Duuren, E., Nieto-Escámez, F.A., Joosten, R.N.J.M.A., Visser, R.,

Mulder, A.B., Pennartz, C.M.A., 2007. Neural coding of actual and

expected reward magnitude in the orbitofrontal cortex of the rat. Learn.

Mem. 14, 613–621.

Von Neumann, J., Morgenstern, O., 1944. Theory of Games and Economic

Behavior. Princeton University Press, Princeton, NJ.

Voorn, P., Vanderschuuren, L.J., Groenewegen, H.J., Robbins, T.W., Pennartz,

C.M.A., 2004. Putting a spin on the dorsal–ventral divide of the striatum.

Trends Neurosci. 27, 468–474.

Wallis, J.D., Miller, E.K., 2003. Neuronal activity in primate dorsolateral and

orbital prefrontal cortex during performance of a reward preference task.

Eur. J. Neurosci. 18, 2069–2081.
Watanabe, M., 1996. Reward expectancy in primate prefrontal neurons. Nature

382, 629–632.

Winstanley, C.A., Theobald, D.E., Cardinal, R.N., Robbins, T.W., 2004. Con-

trasting roles of basolateral amygdala and orbitofrontal cortex in impulsive

choice. J. Neurosci. 24, 4718–4722.

Winstanley, C.A., Baunez, C., Theobald, D.E., Robbins, T.W., 2005. Lesions to

the subthalamic nucleus decrease impulsive choice but impair autoshaping

in rats: the importance of the basal ganglia in Pavlovian conditioning and

impulse control. Eur. J. Neurosci. 21, 3107–3116.

Winstanley, C.A., Theobald, D.E., Dalley, J.W., Cardinal, R.N., Robbins, T.W.,

2006. Double dissociation between serotonergic and dopaminergic mod-

ulation of medial prefrontal and orbitofrontal cortex during a test of

impulsive choice. Cereb. Cortex 16, 106–114.

Wittmann, M., Leland, D.S., Paulus, M.P., 2007. Time and decision making:

differential contribution of the posterior insular cortex and the striatum

during a delay discounting task. Exp. Brain Res. 179, 643–653.

Yanagihara, S., Izawa, E., Koga, K., Matsushima, T., 2001. Reward-related

neuronal activities in basal ganglia of domestic chicks. Neuroreport 12,

1431–1435.

Yang, T., Shadlen, M.N., 2007. Probabilistic reasoning by neurons. Nature 447,

1075–1080.

Yi, R., de la Piedad, X., Bickel, W.K., 2006. The combined effects of delay and

probability discounting. Behav. Processes 73, 149–155.


	Is a bird in the hand worth two in the future? The neuroeconomics �of intertemporal decision-making
	Time and probability
	Decisions under risk and intertemporal decisions
	Probabilistic and dated outcomes

	Rational intertemporal decisions
	(Ir)rational decisions
	Expected utility theory as a normative framework for decision-making under risk
	Discounted utility theory as a normative framework for intertemporal decisions

	Irrational intertemporal decisions: anomalies in intertemporal choice
	Violation of the stationarity axiom
	Violation of the assumption of constant discounting
	Violation of the assumption of utility maximisation
	Gains and losses in intertemporal decision-making
	Further anomalies
	Alternative theories
	Summary

	The neuroscience of intertemporal choices
	Intertemporal decision-making-a challenge for the cognitive neurosciences
	Neural representation of the decision variables ‘reward delay’ and ‘reward amount’
	Neuroanatomy of intertemporal decisions
	Neural integration of ‘reward delay’ and ‘reward amount’
	Is the discounted reward value represented on a single-cell or population level?
	Utility from anticipation-the value of passage of time in the brain
	A single valuation mechanism or multiple choice systems?
	Evidence for multiple decision networks in the brain
	Challenging the multiple systems hypothesis

	Towards a neurocomputational model of intertemporal choice behaviour
	Delay discounting and neurocomputational modelling
	Temporal difference learning
	Neural implementations of a discounting function: TD model
	Neural implementations: climbing-firing profile
	Neural implementations: eligibility trace
	Neural implementations: reverse replay
	A model of intertemporal choices based on reverse replay and Hebbian learning

	Summary and outlook
	Acknowledgements
	References


