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In general, the Hurst exponent. is used as a measure of long-term memory of time series.
In previous neuroimaging studies, H has been introduced as one important parameter
to define resting-state networks, reflecting upon global scale-free properties emerging
from a network. H has been examined in the waiting impulsivity (WI) network in an
earlier study. We found that alterations of H in the anterior cingulate cortex (HACC) and
the nucleus accumbens (HNAcc) were lower in high impulsive (highIMP) compared to
low impulsive (lowIMP) participants. Following up on those findings, we addressed the
relation between altered fractality in HACC and HNAcc and brain activation and neural
network connectivity. To do so, brain activation maps were calculated, and network
connectivity was determined using the Dynamic Causal Modeling (DCM) approach.
Finally, 1–H scores were determined to quantify the alterations of H. This way, the
focus of the analyses was placed on the potential effects of alterations of H on neural
network activation and connectivity. Correlation analyses between the alterations of
HACC/HNAcc and activation maps and DCM estimates were performed. We found that
the alterations of H predominantly correlated with fronto-hippocampal pathways and
correlations were significant only in highIMP subjects. For example, alterations of HACC

was associated with a decrease in neural activation in the right HC in combination
with increased ACC-hippocampal connectivity. Alteration inHNAcc, in return, was related
to an increase in bilateral prefrontal activation in combination with increased fronto-
hippocampal connectivity. The findings, that the WI network was related to H alteration
in highIMP subjects indicated that impulse control was not reduced per se but lacked
consistency. Additionally, H has been used to describe long-term memory processes
before, e.g., in capital markets, energy future prices, and human memory. Thus, current
findings supported the relation of H toward memory processing even when further
prominent cognitive functions were involved.
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INTRODUCTION

The Hurst exponent H is used as a measure of long-term memory
of time series (Eke et al., 2000). In previous neuroimaging studies,
H has been introduced as one important parameter to define
resting-state networks (Taylor et al., 2012), reflecting upon global
scale-free dynamics emerging from a network (Mukli et al., 2018).
As real-world time series in general and neuroimaging data in
particular, often do not fulfill the criteria of self-similarity or other
fractal properties, fractal methods have been further extended.
For example, long-range dependence and self-similarity have
been shown to be strongly interrelated (e.g., Pipiras and Taqqu,
2017), thus, the application of fractal approaches on time series
showing long-range dependence has been encouraged (Abry
et al., 2013). Furthermore, the irregularity of a signal plays
a crucial role, and that “this irregularity contains meaningful
information” (Abry et al., 2013, pp. 19–20).

Among other cognitive functions, H has been linked to human
memory processing mathematically (Namazi, 2018) as well as
in numerous neuroscientific studies. For example, Wink et al.
(2006) showed in a resting-state fMRI study, that bilaterally in
the hippocampus (HC) H increased with age (Wink et al., 2006)
in healthy subjects. In addition, H seemed to be a sensitive
parameter to detect changes in HC processing in patients with
and without memory disturbances, e.g., reduced hippocampal
H in patients with mild cognitive impairment (Long et al.,
2018), autism spectrum disorder (Dona et al., 2017a), and
mild traumatic brain injury (Dona et al., 2017b). Furthermore,
(multi)fractal analysis of fMRI has been used to “disentangle
functional components from artifactual ones, in a robust and
significant manner.” (Ciuciu et al., 2012) and to differentiate
between healthy neural network from impaired ones at the
example of the waiting impulsivity (WI) network in an earlier
publication (Akhrif et al., 2018). WI is defined as the ability to
inhibit a response in order to earn a reward (Voon et al., 2014).
The WI network includes the ventromedial and dorsolateral
prefrontal cortex (dlPFC) representing motor or response
inhibition (Mechelmans et al., 2017), the reward perception-
related nucleus accumbens (NAcc), the anterior cingulate cortex
(ACC) for the cognitive evaluation of the reward and HC and
amygdala (AMY) responsible for reward-based learning (Dalley
et al., 2011). In an earlier study, we found that, H in the ACC
and NAcc was reduced in high impulsive (highIMP) compared
to low impulsive (lowIMP) participants (Akhrif et al., 2018).
Very recent studies showed, that functional connectivity between
the ACC and NAcc in the WI network varied in function of
monetary reward (high reward, strong connectivity, and vice
versa, Mechelmans et al., 2017) and that especially H in the ACC
was associated with impulsivity (Gentili et al., 2020).

Following up on the earlier findings, we addressed the relation
between the impulsivity-related H reductions in the NAcc and
the ACC and brain activation and neural network connectivity of
the entire WI network in this study. To do so, brain activation
maps were generated, and network connectivity was determined
using the Dynamic Causal Modeling (DCM) approach. DCM
quantifies the influence region A has on a second region B;
thus, it reveals the causal structure of a network. In a final step,

H scores as described earlier were transferred into deviations
from 1H. H valued close to 1 in the fMRI signal has been
associated with highly complex and well attuned dynamics
in neural networks (Lipsitz and Goldberger, 1992; Goldberger
et al., 2002). In the earlier publication we showed that H
values for highIMP subjects (i.e., impaired network functioning)
were significantly lower than in lowIMP subjects. Therefore,
the question to tackle in the current analyses was, how the
deviation from 1 was related to brain activation and effective
network connectivity. To address the relation between altered
fractality and the network, correlation analyses were performed
using H deviations and brain activation maps as well as DCM
estimates. This way, the focus of the analyses was placed on the
potential effects of alterations of H on neural network activation
and connectivity.

MATERIALS AND METHODS

Subjects
In this pilot study, we examined 103 male students, aged
between 19 and 28 years (24.0 ± 2.6 years). Volunteers
were recruited at the University of Wuerzburg, Germany,
and screened for impulsivity using the Wender-Reimherr-
Interview and Attention-Deficit/Hyperactivity Disorder checklist
(subscales “impulsivity” and “hyperactivity and impulse control”;
Rösler et al., 2008; for details see Neufang et al., 2016). The study
was conducted in accordance with the Declaration of Helsinki
in its latest version from 2008 and was approved by the ethics
committee of the Faculty of Medicine, University of Wuerzburg.
Their written informed consent was obtained from all volunteers.

Experimental Paradigm
As cognitive task, the human version of the five choice serial
reaction time task (5-CSRTT; animal version 5-CSRTT: Bari et al.,
2008; human version, 4-CSRTT: Voon et al., 2014) was used.
A trial started with a short presentation of 4 boxes, followed
by a target in terms of a green dot, located in one of the four
boxes. Correct and quick responses were reward by two amounts
of money (10 Cent, 1 Euro). Premature responses were defined
as reactions before target onset (for a representative trial see
Supplementary Figure S1). The task consisted of one block
outside the scanner (2.5 min) and five blocks within the MR
scanner (14 min) with each block consisting of 20 trials. Total task
duration was 16.5 min (for further detail Neufang et al., 2016).

Behavioral testing started with a first baseline block outside the
scanner, conducted to determine the individual mean reaction
time window (rt, Mrt ± 2 SD). The individual rt windows were
used for reward definition in all consecutive blocks, which were
performed in the MR scanner: one Euro if the subject responded
correct and faster than the individual rt window, 10 cent if the
subjects’ responses were within the same. Incorrect answers were
neither rewarded nor punished.

Data Acquisition
MRI scanning was performed using a 3 Tesla TIM Trio Scanner
(Siemens, Erlangen, Germany). Functional MRI included a
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T2∗-weighted gradient echo-planar imaging sequence with the
following parameters: repetition time (TR) = 2000 ms, echo
time (TE) = 30 ms, 36 slices of 3 mm thickness, field of view
(FoV) = 192 mm, flip angle = 90, and number of volumes = 425.

Data Processing and Time Series
Extraction
fMRI-data processing was performed using the
Statistical Parametric Mapping Software Package (SPM12,
Wellcome Department of Imaging Neuroscience, London,
United Kingdom, Wellcome Trust Center for Neuroimaging;
http://www.fil.ion.ucl.ac.uk/spm/). Data preprocessing in the
native space included temporal and spatial alignment (i.e., slice
time correction, realignment, and unwarping). Images were
then spatially normalized into a standard stereotactic space
(Montreal Neurological Institute), resampled to an isotropic
voxel size of 2 mm × 2 mm × 2 mm, and spatially smoothed
with a Gaussian kernel of 8 mm full width at half maximum.
Pre-processing did not include high pass filtering or global
mean correction. Model specification on single subject level
included the experimental condition “response inhibition”
and “reward” with response inhibition being related to target
processing and reward was determined in terms of “win
trials – loss trials.” In addition to the experimental conditions,
“error trials” and “realignment parameters” (i.e., six regressors
containing movement in three spatial and three rotational axes)
were specified as nuisance regressors to reduce error variance
and correct for movement artifacts. Condition-specific onset
times were extracted from experimental log-files with onsets
of the target trials defined at the moment, the target picture
appeared, and onset times of reward trials locked to the time
points when the reward feedback picture appeared on the screen.
The onsets of error trials were defined as the target onsets of
incorrect trials.

Time Series Extraction
Exact coordinates of ROIs were defined based on the significantly
activated brain regions of “response inhibition”- and “reward”
processing resulting from one sample t-tests. The local maxima
of each significantly activated regions were identified and
coordinates were then used as the center of a 10 mm spheric
ROI using MarsBar (Brett et al., 2002). ROIs were built and used
for the extraction of the time series for each subject. Time series
extraction was performed using the routine as suggested by Brett
et al. (2002)1 from preprocessed fMRI data (i.e., smoothed files
resulting from the pre-processing procedure; Brett et al., 2002).
Finally, linear trend removal was performed between the first and
the last data point of the extracted time series [using the matlab
routine detrend (y)] (Bai et al., 2008; Zhang et al., 2008; Fox
et al., 2009; Qiu et al., 2011). Linear detrending is a necessary pre-
processing step, as fMRI time series have slowly varying trends,
that should be removed before performing spectral analyses
(Tanabe et al., 2002).

2.5 adaptive fractal analysis- AFAMultiple investigations
showed that long memory is an attribute, a property of functional

1http://marsbar.sourceforge.net/marsbar.pdf

networks and H is the mathematical expression, used to quantify
it. Long memory processes belong to a wider range of processes,
all expressing a power law spectrum (Eke et al., 2000). Their
power spectral density function

Sx(−)Sx(f ) ≈ C
∣∣f ∣∣−β where− 1 < β < 3 (1)

[βACC: M = 0.86 ± 0.24, T(103,1) = 91.01, p = 0.000; βNAcc:
M = 0.81 ± 0.26, T(103,1) = 85.04, p = 0.000] and with the
approximation improving as f approaches zero. Whereas fMRI
signals reflect information stemming from different cognitive
and physiological processes [e.g., respiratory-frequency: 0.1–
0.5 Hz; cardiac-frequency range: 0.6–1.2 Hz (Cordes et al., 2001);
cognition-related low-frequency band: 0.045–0.087 Hz (Yang
et al., 2018)], neural activity as providing the basis of functional
connectivity in particular (Biswal et al., 1995) is carried in
the low frequency components of the fMRI signals (<0.1 Hz;
Achard et al., 2006; Ginestet and Simmons, 2011). Such processes
describe scale-free, or scale-invariant time dynamics such as
temporal brain activities. Scale invariance is associated with long
range correlation in time. This is the condition to check for first,
to assume scale invariance. To compute the β exponent, however,
different definitions and methods might be used. For β values
interpretation (Eke et al., 2002) as well as the class of processes
related to them see Akhrif et al. (2018).

In this study, AFA was chosen for the determination of H, a
factor that reflects in a power law manner the relationship, that is
intrinsic to fractal processes, between the variance of fluctuation
computed around, in our case, a second order polynomial trend
v (i) fitted to time series within each segment w, and its size:

F (w) =

[
1
N

N∑
i=1

(u (i)− v (i))2
]1/2

∼ wH

N : length of the time series
w = 2n+ 1, n = 5, 6, . . . , 13

(2)

H was defined as the slope of the log-log diffusion plot
log2 (F (w)) as a function of log2 (w) (for further details
see Akhrif et al., 2018).

According to the dichotomous fGn/fBm model of Mandelbrot
and Van Ness (1968) as introduced in the fractal time series
analysis field by Eke et al. (2000, 2002), signal classification
was performed (Mandelbrot and Van Ness, 1968; Eke et al.,
2000, 2002). One of three methods of signal classification was
detrended fluctuation analysis (DFA) of Peng et al. (1994).
Since AFA results (H), with AFA being strongly related to
DFA, were significantly smaller than 1 in both regions [HACC:
M = 0.93 ± 0.12, T(103,1) = 5.95, p = 0.000; HNAcc:
M = 0.91 ± 0.13, T(103,1) = 7.22, p = 0.000]s, signals were
classified fGn, and H = HfGn.

Brain Activation
On single subject level, two contrasts of interest were calculated,
“response inhibition” to isolate target-induced brain activation,
and “reward” in terms of “win-loss” to identify brain activation
associated with the receipt of monetary reward. All brain analyses
were performed in a region of interest (ROI) based approach,
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using atlases within the Wake Forest University PickAtlas
toolbox,2 and covering the WI network regions: bilateral superior
frontal gyrus, MFG, orbital, triangular, and opercular parts of
inferior frontal gyrus (IFG), ACC, HC, and AMY, NAcc, and
medial fronto-orbital gyrus. Resulting contrast images entered
statistical group analysis.

Neural Network Connectivity (DCM)
For DCM analysis, DCM 12 was used as implemented in the
SPM12 software. The current network included eight regions,
resulting from significantly activated WI network regions (see
Table 1). Endogenous connectivity and the condition-specific
(i.e., response inhibition, reward) modulation of connectivity
(modulatory inputs) were addressed. Subject-specific coordinates
of the global maxima of activated clusters from brain activation
results were used as centers for ROIs. Volume of interest spheres
with a radius of 5 mm were built around the averaged coordinates
in the NAcc and the AMY, and with a radius of 8 mm in all cortical
regions. Different sphere sizes were chosen due to the regional
volume size of the structures. Regional time series were extracted
for all network regions.

Based on introduced findings, ten model families were
constructed with 4 families varying connectivity within response
inhibition-related network, 4 reward-associated families and 4
families across both conditions. Across all families and models,
endogenous connectivity was specified for all connections,
conditions-specific modulation, however, was varied as follows.

Inhibition-related families were families one to four. In family
one (HC bottom-up), it was assumed that the HC influences top-
down regions such as right and left MFG (family 1, model 1),
the ACC (family 1, model 2), and both, MFG and ACC (family
1, model 3). Families two to four varied top-down connections
bilateral from the MFG on the HC (family 2), from the ACC on
HC (family 3), and MFG and ACC on the HC (family 4).

Families five to eight defined the interplay between the NAcc,
AMY, and the vmPFC. Therefore, family five determined the

2http://fmri.wfubmc.edu/software/pickatlas

TABLE 1 | Global maxima of WI-associated brain regions.

Condition Brain region Z Localization

x y z

Response inhibition 24 −28 −6 21.3 Right HC

−22 −28 −6 17.7 Left HC

−44 6 28 21.7 Left MFG

40 8 34 19.7 Right MFG

6 30 28 18.6 Right ACC

8 12 −10 14.6 NAcc

Reward −10 8 −14 14.7 NAcc

−22 0 −12 5.5 Left amygdala

0 48 −12 6.5 vmPFC

ACC, anterior cingulate cortex; HC, hippocampus; MFG, middle frontal gyrus;
NAcc, nucleus accumbens; vmPFC, ventro-medial prefrontal cortex, p < 0.05, and
FWE-corrected on voxel-level.

bottom-up signaling of the NAcc to the AMY (family 5, model
1), to the vmPFC (family 5, model 2), and both, the AMY and
vmPFC (family 5, model 3). In analogy, in family 6 the AMY
was defined as bottom-up structure and models varied between
the targeted region NAcc (family 6, model 1), vmPFC (family
6, model 2), and both, NAcc and vmPFC (family 6, model 3).
In family 7, both, NAcc and AMY were defined as bottom-up
structure signaling to the vmPFC (family 7, model 1). In family
eight, reward-associated top-down was defined on the NAcc
(family 8, model 1), on the AMY (family 8, model 2), and on both,
NAcc and AMY (family 8, model 3).

Across conditions, connections between reward-associated
structures NAcc and AMY and inhibition-related MFG and ACC
were defined in terms of family 9: NAcc – bottom-up signaling to
the MFG (family 9, model 1), the MFG and the ACC (family 9,
model 2), the MFG and the HC (family 9, model 3) as well as the
MFG, the HC and the ACC (family 9, model 4). Family 10 defined
HC and NAcc combined bottom-up signaling. Families 11 to 13
varied MFG and ACC top-down modulation of NAcc and AMY
(for all models see Supplementary Table S1).

The families covering 28 models were compared applying
random-effects Bayesian model selection (Stephan and
Friston, 2010; Stephan et al., 2010) within a pre-specified
Occam’s window (p < 0.05). Individual parameter estimates
of the model with highest evidence were then assessed by
means of random-effects Bayesian model averaging (Penny
et al., 2010) across the models of the winning family.
The Bayesian model averaging parameter estimates were
then entered into summary statistics at the group level.
The significance of each parameter was assessed by a
one-sample t-test To test condition-specific modulation of
connectivity for significance, repeated measure ANOVA models
were defined with the within-subject factor connectivity
type (endogenous connectivity vs. condition-specific
modulatory input). Threshold for statistical significance
was p < 0.05, FDR-corrected for multiple comparisons
(Benjamini and Hochberg, 1995).

Statistical Analysis: Brain Activation and
AFA
To address the relation between HfGn deviation and network
function, 1−HfGn scores were calculated. On group level, two
sample t-tests were defined with the group factor impulsive
phenotype (highIMP vs. lowIMP) including the covariates HACC

fGn
and HNAcc

fGn alterations and determined as interacting with the
group factor. Contrast of interest were (i) the correlation between
alterations in HfGn and brain activation across all subjects (e.g.,
response inhibition ∗ HACC

fGn alterations) as well as (ii) group-
specific correlations (e.g., response inhibition∗ HACC

fGn alterations:
highIMP vs. lowIMP). The between-subject factor impulsivity
classified subjects based on behavioral performance [i.e., a
number of premature responses ≥ 3 in the 5-CSRTT as highIMP
(n = 38) subjects and subjects with number of premature
responses < 3 as lowIMP (n = 65) subjects]. Threshold of
significance was pFWE < 0.05 on voxel level.
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RESULTS

fMRI Analysis
One sample t-tests of response inhibition and reward revealed a
significantly activated WI network including the regions right/left
HC, right/left MFG, ACC, right/left NAcc, left AMY, and the
vmPFC (Table 1).

Dynamic Causal Modeling Estimates
Model comparison favored the reward-related NAcc + Amy
bottom-up model 1 of family 7, with a family exceedance
probability of xp = 0.8353 and a model exceedance probability
of xp = 0. 9954. In the winning model, endogenous connectivity
included all connections, and reward-related modulatory input
bidirectional connectivity between the NAcc and the AMY
and going to the vmPFC (i.e., NAcc→l_AMY, NAcc→vmPFC,
l_AMY→NAcc, and l_AMY→vmPFC). The one-sample t-test,
identifying connections of significant connectivity strength
revealed that almost all connections were passed the threshold
of significance except for connectivity from the rHC→l_AMY
(T = 1.3, p = 0.182, n. s.), lMFG→rHC (T = 1.1, p = 0.275, n. s.),
r_MFG→vmPFC (T = 0.8, p = 0.458, n.s.), ACC→r_HC (T = 1.1,
p = 0.267, n.s.), and vmPFC→r_MFG (T = 0.6, p = 0.582, n.s.).
Repeated-measures ANOVA revealed significant modulation
for all four connections (NAcc→l_AMY: Fconnectivity type = 37.5,

p = 0.000; NAcc→vmPFC: Fconnectivity type = 114.7, p = 0.000;
l_AMY→NAcc: Fconnectivitytype = 40.5, p = 0.000; and
l_AMY→vmPFC: Fconnectivitytype = 72.6, p = 0.000).

Alterations in HACC
fGn and Network

Function
During response inhibition brain activation in the r_HC
negatively correlated with alterations in HAcc

fGn across all
subjects. The effect, however, seemed to be driven by
highIMP subjects as demonstrated in the scatterplot in
Figure 1. In addition, highIMP-specific positive correlations
between connectivity emerging from the ACC and heading
toward the l_HC (ACC→l_HC) and alterations in HAcc

fGn were
revealed. Furthermore, in lowIMP subjects HAcc

fGn alterations
correlated negatively with left-hemispheric fronto-hippocampal
connectivity, i.e., l_HC bottom-up signaling to the l_MFG
and frontal top-down control of the l_HC by the l_MFG
(l_HC→l_MFG, l_MFG→l_HC; for all results see Tables 2, 3
and Figure 1).

Alterations in HNAcc
fGn and Network

Function
Reward-specific activation bilaterally in the dlPFC (MFG and IFG
pars triangularis) correlated positively with HNAcc

fGn alterations.

FIGURE 1 | Neural activation and connectivity associated with 1− HACC
fGn . Dotted lines indicate correlations with brain activation, arrows represent correlations with

connectivity. Scatterplots show correlations, specifically for highIMP, and lowIMP individuals.
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This correlation was stronger in highIMP compared to lowIMP
(see Tables 2, 3 and Figure 2). In addition, alterations in HNAcc

fGn
correlated in highIMP but not in lowIMP subjects, with top-down
control of the r_HC by the l_MFG (l_MFG→r_HC).

DISCUSSION

In this study, we investigated the relation between impulsivity-
associated deviations of HfGn in the ACC and the NAcc and the
function of the underlying network. In an earlier publication,
HfGn in both regions have been found to be reduced in
highIMP subjects. Current analyses revealed that deviations
in the HACC

fGn were predominantly associated with response
inhibition processing, namely right hippocampal brain activation
and, specifically in highIMP subjects, connectivity from the ACC
on the left HC. Likewise, deviations in HNAcc

fGn were associated
with broad reward-associated activation clusters in the dlPFC
as well as connectivity from the left MFG on the right HC.
Findings in reward processing were only significant in highIMP
subjects. Thus, across all analyses, HfGnalterations seemed to
be related to HC functioning, hinting toward a HfGn -specific
relation to HC processing.

In the WI network as proposed by Dalley et al. (2011)
the HC has been assumed to directly interact with the ACC
in terms of both structures top-down controlling the NAcc.
Empirical evidence in humans, however, is scarce (Morris
et al., 2016; Neufang et al., 2016; Mechelmans et al., 2017).
Recent studies showed, that impulsivity was strongly linked
to a hypothalamo-hippocampal pathway including the HC
(Gruber and McDonald, 2012), and the NAcc (Barlow et al.,
2018; Noble et al., 2019) with a maladaptation of HC-NAcc
pathway contributing to the development of impulsivity and
impulsivity-associated psychiatric disorders such as addiction
(Everitt and Robbins, 2005). For example, in mice WI behavior
potentiated hippocampal neurogenesis the way that during
reward seeking behavior in the 5-CSRTT, precursor cells
were produced in the dentate gyrus of the HC (Oliveros
et al., 2017; Peyton et al., 2019). Such impulsivity-induced
neurogenesis has been discussed as reflecting both reward-
driven highIMP responding and (the known HC-associated)
heightened learning performance (Peyton et al., 2019). Thus,
it seemed, as if HC function plays a crucial role within the
impulsivity network. Combining both assumptions, (i) the

TABLE 3 | Significant correlations between alterations of HfGn and network
connectivity.

Connection RlowIMP RhighIMP Z

1− HACC
fGn l_HC→l_MFG −0.32*, p = 0.01 0.23, p = 0.17 2.6*, p = 0.01

l_MFG→l_HC −0.30*, p = 0.02 0.21, p = 0.21 2.4*, p = 0.01

ACC→l_HC −0.03, p = 0.84 0.36*, p = 0.03 1.9*, p = 0.03

1− HNACC
fGn l_MFG→r_HC −0.09, p = 0.49 0.35*, p = 0.03 2.1*, p = 0.02

l_HC, left hippocampus; r_HC, right hippocampus; l_MFG, left middle frontal gyrus;
ACC, anterior cingulate cortex; ∗p < 0.05; FDR- corrected for 64 comparisons (8
network regions, 8 × 8 connectivity matrix).

HC plays a crucial role within the network and (ii) fractal
parameter such as H disentangling functional components
from artifactual ones, the current strong relation between
HfGn and HC processing seemed plausible. An alternative
explanation might be their common involvement in long-term
memory. H has been used to describe long-term memory
processes before, e.g., in capital markets (Di Matteo et al.,
2005; Granero et al., 2008), energy future prices (Serletis
and Rosenberg, 2007), and human (motor) memory (Chen
et al., 1997; Namazi, 2018). The 5-CSRTT, in return, involves
a high learning and memory load as the training and test
protocol for animals covers numerous training sessions over
weeks (“approximately 30–40 daily sessions,” Bari et al.,
2008). Thus, in our analyses, the HfGn exponent proved
its strong relation to learning and memory processing even
when further prominent cognitive functions such as reward
processing were involved.

In addition to HC, altered HfGn was associated with
frontal activation and connectivity. The MFG and the IFG
are core regions within impulsivity and WI (Dalley et al.,
2011), strongly interacting with the ACC (Mechelmans
et al., 2017), and implicated in response inhibition and
motor control (Morris et al., 2016; Neufang et al., 2016;
Mechelmans et al., 2017). Association between H and the
frontal cortex have been reported in numerous human studies
before. For example, H in the prefrontal cortex in healthy
volunteers correlated with impulsivity (Gentili et al., 2020),
personality traits (e.g., extraversion Lei et al., 2013; Gentili
et al., 2017), cognitive processing (response time in a face
recognition task Wink et al., 2008), and healthy aging (Dong
et al., 2018; Mukli et al., 2018). In addition, pathological
processes were discovered, e.g., in the IFG of schizophrenic

TABLE 2 | Significant correlations between alterations in HfGn and brain activation.

Condition Contrast Brain region Z Localization

x y z

Response inhibition ∗ 1− HACC
fGn (lowIMP + highIMP)(−) 26 −42 0 4.1, p = 0.054 Right HC

Reward ∗ 1− HNACC
fGn highIMP > lowIMP −42 12 42 4.8, p = 0.004 Left MFG

40 20 44 4.6, p = 0.006 Right MFG

50 34 −2 4.4, p = 0.018 Right IFG

−44 18 8 4.3, p = 0.022 Left IFG

(−), negative correlation; HC, hippocampus; MFG, middle frontal gyrus; IFG, inferior frontal gyrus; p. triangularis, p < 0.05, and FWE-corrected on voxel-level.
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FIGURE 2 | Neural activation and connectivity associated with 1− HNACC
fGn . Dotted lines indicate correlations with brain activation, arrows represent correlations with

connectivity. Scatterplots show correlations, specifically for highIMP, and lowIMP individuals.

patients (Sokunbi et al., 2014), the MFG of patients with
mild cognitive impairment (Long et al., 2016, 2018), and
Alzheimer’s Disease (Nimmy John et al., 2018) as well as the
IFG of autistic individuals (Lai et al., 2010). Thus, frontal
processing has been described as following fractal rules
before. In line with our findings, H seemed to be able to
detect neural alterations not only in pathological populations
but also in individual variability in the normal population
(Serletis et al., 2012).

In summary, in this study, we addressed the relation between
altered HfGn and further neural network parameters in an
explorative way to get an idea of how deviations in HfGn
were associated with neural network functioning. We found
that alterations in HfGn were predominantly related in fronto-
hippocampal pathways arguing, that HfGn proved its sensitivity
toward learning and memory processing. However, despite
the highly interesting and plausible results, we have to state,
the current findings reflect processes within a very specific
sample (young healthy male students) performing the also
very specialized 5-CSRTT (a paradigm which has, to date,
predominantly been used in animals). In addition, in contrast
to earlier publications, where the interaction between several
physiological systems such as brain and cardiac system (Liu
et al., 2015, Lin et al., 2016), or brain, cardiac and respiratory
systems (Bartsch and Ivanov, 2014) were addressed over phases
of different physiological states, analysis of the current work

was limited to one physiological network and only during one
single state. Especially the frontal lobe seemed to interact with
the heart as has been shown in several studies by Thayer
et al. (2009, 2012) and Patron et al. (2019). In addition,
this data stems from a sample of male subjects only. The
data has been collected in a pilot study, which has been
published 2016 as the first fMRI study using the human version
of the originally animal paradigm 5-CSRTT (Neufang et al.,
2016). As at that time, network regions associated with WI in
humans was mainly theoretical, we decided to investigate neural
underpinnings in a highly homogenous sample, which is healthy
male students. Thus, findings are of limited generalizability
and need to be replicated in future studies with experimental
protocols like those published before. However, the combination
of H with further cognitive, neural and peripheral parameters
such as inflammation scores as well as the longitudinal study
of H to describe physiological variations (e.g., diurnal, brain
maturation, aging) are of highest interest in the study of
neural networks.
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