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Choice-consistency is considered a hallmark of rational value-
based choice. However, because the cognitive apparatus
supporting decision-making is imperfect, real decision-makers
often show some degree of choice inconsistency. Cognitive
models are necessary to complement idealized choice axioms
with attention, perception and memory processes. Specifically,
compelling theoretical work suggests that the (imperfect)
retention of choice-relevant memories might be important for
choice-consistency, but this hypothesis has not been tested
directly. We used a novel multi-attribute visual choice
paradigm to experimentally test the influence of memory
retrieval of exemplars on choice-consistency. Our manipulation
check confirmed that our retention interval manipulation
successfully reduced memory representation strength. Given
this, we found strong evidence against our hypothesis that
choice-consistency decreases with increasing retention time.
However, quality controls indicated that the choice-consistency
of our participants was non-discernable from random
behaviour. In addition, an exploratory analysis showed
essentially no test–retest reliability of choice-consistency
between two observations. Taken together, this suggests the
presence of a floor effect in our data and, thus, low data
quality for conclusively evaluating our hypotheses. Further
exploration tentatively suggested a high difficulty of
discriminating between the choice objects driving this floor effect.
1. Influence of memory processes on
choice-consistency

Imagine a stock trader who wants to trade stocks on two different
days and plans to invest a starting capital of 600€. On the first day,
shares of company A cost 200€ and shares of company B 150€. The
stock trader buys 3 shares of company A and 0 shares of company
B on the first day. On the second day, the share price of company A
sinks to 150€ and the share price of company B rises to 200€. How
should the stock trader respond to such a volatile stock market?
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A naïve (and inconsistent) stock trader might be tempted to prematurely sell the shares of company A
and instead invest into company B. However, this would incur sensitive losses to the trader (de facto 150
€, a fourth of the starting capital). More importantly, continuously selling shares cheaper than buying
them will inevitably lead to the loss of all capital and being driven out of the market (the so-called
money pump phenomenon). Such investment behaviour might, for example, arise from an inconsistent
company value definition. By contrast, a consistent stock trader would base trading decisions on
financial analysis, for example considering liquidity, book-to-market value, degree of state-ownership
and past performance. This would result in a more robust value definition of company shares than
the share price on a given day. Such a stock trader would, ideally, buy stocks at low prices and sell
stocks for a profit, using the price volatility advantageously.

Consistent choice can be formalized according to revealed preference theory [1–3]. It requires consistent
integration of multiple-choice attributes [4] so that it can be rationalized by a monotonic concave utility
function [5]. In the example above, a utility could be given by the consistent integration of liquidity,
book-to-market value, degree of state-ownership and past performance of company shares. Formally,
revealed preference theory in its generalized form can be defined as a bound on the structure of the
preference relation. Varian [6] provides a summary of revealed preference theory.

In practice, revealed preference theory is often violated by seemingly inconsistent choice, leading to
some researchers proposing sensible relaxations of the choice axioms [7] or the abandonment of choice
axioms altogether in favour of a variety of heuristics [8].

An important requirement for consistent choice according to revealed preference theory is the
stability of preferences and goal structures. The decision maker must have ‘a definitive structure of
wants’ [5]. While the stability of preferences over prolonged time spans is considered trivial by some
[9], others pointed out that preferences may change by endogenous and exogenous cause [10].
Importantly, such dynamic changes of preferences can be the result of natural psychological processes
such as attentional shifts, memory encoding and retrieval. Query Theory [11] proposes that
preferences are not always directly accessible to or completely defined by the decision maker. Instead,
relevant experiences with the choice options are retrieved from memory to construct preferences
during the decision process: ‘Preferences, like all knowledge, are subject to the processes and
dynamics associated with retrieval from memory’ [12]. Gabaix & Laibson [13] propose in a similar
notion that value-based choices are guided by imperfect Bayesian forecasting of future values. These
forecasts are derived from prior beliefs and previous experiences. Failure of sufficient retrieval of such
memories could result in unstable and incompletely defined preferences and, thus, choice
inconsistency. Congruently with Query Theory, recent neuropsychological research finds evidence for
the relevance of memory-related structures for value-based choices [14].

A problem of such choice-relevant memory failures is that they are not directly observable from
behaviour: we can neither assess which nor how well choice-relevant memories are retrieved from
choice behaviour. In a recent preregistered study, Levin et al. [15] offered a trait heterogeneity-based
approach to the problem. The authors recruited people who were at least 65 years old to test for the
effect of differences in memory abilities (measured by a cognitive assessment battery) on inconsistency
in food choice. Participants rated a catalogue of food items on a Likert scale. Afterwards, they made
repeated pair-wise choices between all possible pairs of food items from the catalogue. Memory ability
heterogeneity affected the divergence of food ratings and actual choices. That is, participants with worse
memory ability tended to more frequently choose items with a lower rating over items with a higher
rating. However, unexpectedly, memory ability did not influence the transitivity of choice itself. It is
important to note that the study by Levin et al. [15] did not offer any direct measurements of choice-
relevant memory retrieval and deploys a non-experimental research design. Therefore, the process of
how memory retrieval of goals and preferences affects choice-consistency remains unclear.

In the following sections, we will argue that the multi-attribute visual choice (MAVC) paradigm is a
better-suited paradigm to assess the influence of memory retrieval of goals on choice-consistency. MAVC
describes the comparative judgement of visual objects that are characterized by multiple attributes, e.g.
orientation, colour and shape. Further, we will argue how the revealed preference framework allows a
broader evaluation of choice-consistency than traditional accuracy measures of perceptual decisions.
1.1. Multi-attribute visual choice as a model of value-based choices
In our interpretation, the decision process as postulated by Query Theory [11] proposes, at the core, that
information about the choice goals is retrieved from memory. Choice options are then compared along
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Figure 1. Mapping of concepts from GCM of categorization to Query Theory. Note. Simplified graphical representation of the decision
process in Query Theory [11] and the GCM of categorization [18]. Nodes with dark background represent observed variables and
nodes with white background represent latent variables. Nodes with single-line borders represent stochastic variables and nodes
with double-line borders represent deterministic variables.
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with all relevant dimensions to the choice goals and the option with maximum integrated goal similarity
is chosen. In management science, these goals are also called performance targets [16].

For example, when a stock trader decides whether to invest in shares of company A or company B,
the trader compares them regarding liquidity, book-to-market value, degree of state-ownership, past
performance etc. to a benchmark of what they consider a good investment. The investment option in
the choice set which comes closest to the benchmark in memory, or so-called choice goals, is chosen
(assuming that not investing is no option).

This process is strikingly similar to the decision process proposed by the generalized context model
(GCM) of categorization [17,18] in sensory perception, according to which new objects are perceptually
categorized based on their similarity to stored exemplars. Exemplars are represented as points in a multi-
attribute psychological space. Categorization then is performed by integrating the distance of the new
object to the exemplars of a category in memory among all dimensions. Figure 1 shows how
important concepts of value-based choice map onto equivalent concepts of MAVC. We propose that
the process of comparing choice options to performance goals in value-based choice and to exemplars
in MAVC is, psychologically, sufficiently similar to use MAVC as a model for value-based choice.

In MAVC, participants have to choose one out of a set of objects subjectively most similar to a
previously learnt exemplar. The choice set objects vary in their similarity to the exemplar regarding
multiple attributes. Such choices are comparable to, although not identical with, delayed-match-to-
sample tasks [19–24].

An important advantage of MAVC tasks over value-based choice tasks is that we can experimentally
induce and manipulate exemplar representations in MAVC, whereas goal representations are usually
pre-existing, unknown and difficult to manipulate in value-based choice. We can, for example,
experimentally manipulate memory representation strength of exemplars through changes of the
retention interval (RI) between exemplar presentation and choice. These processes are well-studied
and several off-the-shelf models for the relationship of memory representation strength and RI exist,
e.g. exponential and power models [25].
1.2. Hypotheses
Based on the predictions of Query Theory [11] and neuropsychological evidence on the role of memory
for value-based choice [14], we expect choice-consistency to be compromised when memory-based goal
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representations are weak. Correlational evidence partly suggests that this is the case [15]; however, a
direct experimental test of the relationship of the strength of memory-based goal representations and
choice-consistency is missing and non-trivial to implement.

Based on theoretical considerations [4,17,18], we propose that MAVC can serve as a model for value-
based choice. In MAVC, we can experimentally manipulate memory representation strength of exemplars
through changes of the RI between exemplar presentation and choice. This maps to a manipulation of the
strength of memory-based goal representations in our framework (figure 1). Revealed preference theory
[1–3] can be used to analyse MAVC consistency without requiring assumptions about attribute weights
or the parametric form of an integration function. Therefore, revealed preference theory can provide a
general test of adherence to multi-attribute integration as formulated by the GCM of categorization
and multi-attribute utility theory. We propose the following hypothesis:

H1: As memory representations of exemplars are integral for MAVCs [18], we expect choice-consistency
to decrease for longer RIs. That is, we expect an inverse relationship of RI between learning of the
exemplar and choice and choice-consistency across multiple choices. Hence, we will provide
experimental evidence on the role of memory representation strength of goals for choice-consistency.

Previous research on the retention of information shows that forgetting curves are nonlinear [25]. As we
expect choice-consistency to be directly affected by the memory representation, we also expect the
relationship of the RI and choice-consistency to be nonlinear.

H2: We expect choice-consistency to decrease exponentially for longer retention intervals. That is, we
expect an exponential model of the relationship of RI and choice-consistency to be more strongly
supported by the data than a null model (predicting a truncated normal distribution around the
mean of the data). The evidence on H2 will help us to quantify the role of memory representation
strength of goals for choice-consistency beyond a directional prediction.
H3: In congruence with H2, we expect the exponential decrease of choice-consistency for longer RIs to
directly replicate in a new dataset. This is important, as replicability is a minimal requirement on the
meaningfulness of a psychological phenomenon.

2. Methods
2.1. Why is revealed preference theory necessary?
Our main dependent variable is consistency in MAVC. We quantified visual choice-consistency with
analysis tools borrowed from revealed preference theory. These are preferable over standard indices
used in the visual memory and perception literature for conceptual and methodological reasons, as
explained in the following.

Value-based choices usually involve trade-offs of different choice attributes. For example, a customer
buying snacks might consider both taste and healthiness. While a chocolate bar is arguably tastier, an
orange is healthier. A decision, therefore, requires integrating both choice attributes. Whether taste or
health is given more weight is subjective. Concludingly, there is no objectively correct choice. A model
of value-based choices should, therefore, include similar attribute trade-offs.

In MAVCs, the choice set stimuli represent a trade-off of similarity to the exemplar regarding multiple
attributes. This means that, unlike in traditional memory recognition tasks, such as delayed-match-to-
sample tasks, no visual object in the choice set is most similar to the exemplar with regard to all
attributes. For example, consider a three-dimensional exemplar cube whose orientation is tilted along
the X- and Y-axes (figure 2). One object in the choice set might be most similar to the exemplar
regarding X-orientation while another one is similar regarding Y-orientation. Therefore, there is no
objectively correct or dominating choice. This prohibits the use of traditional accuracy measures of
perceptual choice that require a normatively correct choice option. By contrast, revealed preference
theory allows one to test choice-consistency in the context of attribute trade-offs without making
unnecessary assumptions about attribute weights or the form of an integration function [26].

2.2. Sample characteristics and exclusion criteria
Participants were recruited from undergraduate psychology students at Heinrich-Heine-University
Düsseldorf, Germany on campus and by online adverts. Participants were at least 17 years old, had a



ITI: 0.5–1.5 s

PT: 5.0 s

RI: 0–30.0 s

choice

Figure 2. Timeline of a single choice trial. Note. From top left to bottom right: 1. The inter-trial interval (ITI) lasted 0.5 to 1.5 s. A
fixation cross was presented in the middle of the screen. 2. During the presentation time (PT), an exemplar cube was presented for
5 s in the middle of the screen. 3. During the RI, a mask of cubes in random orientations was presented. The RI was randomly
selected from an interval 0 to 30 s and was fixed per participant per block. 4. After the retention interval, the choice set of five
cubes with different orientations was presented. Each element of the choice set was presented equidistantly around the exemplar.
The order of the choice set elements was randomized. Participants had to make a forced a choice on which among the choice set
stimuli is most similar in its orientation to the exemplar.
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normal or corrected vision, a good level of German, no neuropsychological or psychiatric diseases and
gave informed written consent. The study was approved by the local institutional review board of
Heinrich-Heine-University and was conducted in accordance with the Declaration of Helsinki.
Participants were reimbursed by course credit.

Participants were excluded from the analysis if they did not complete the full experimental session.
We did not exclude partial data.
2.3. Experimental set-up and procedure
After participants had given their informed written consent, we assessed age, gender and mother-
tongue.

Participants then solved a memory-based visual decision task (figure 2). In each trial, a three-
dimensional exemplar cube was presented for 5 s.1 Each side of the cube was characterized by a
unique colour in the RGB space2 from a colour scale optimized for colour-blind people [27]. Each side
of the cube was 200px long. The exemplar cube had an orientation of 10, 75, 120, 185, 250 or 315
degrees on the X- and Y-axis and an orientation of 0 degrees on the Z-axis. After the presentation of
the cube, a mask of 10 similar cubes (with random X- and Y-orientations) was presented to the
participants for a short RI. After the RI, a choice set of five cubes with variable X- and Y-orientations
was presented, and participants had to select one of the five cubes that had the most similar overall
orientation to the exemplar.

The general notion of the task can be compared to that of delayed-match-to-sample tasks [19–24] with the
difference that there is never a perfect match to the sample. Instead, the choice set stimuli represented a variable
trade-off of orientation similarity to the exemplar regarding the X- and Y-axis. For example, a particular
stimulus from the choice set might have had a similar X-orientation but a different Y-orientation. Another
stimulus might have had a different X-orientation but a similar Y-orientation. Additionally, there could be
trials where the choice set stimuli orientations resembled the exemplar orientation more closely and other
trials where all choice set stimuli were quite differently oriented from the target stimuli.
1We chose this particular presentation time based on a pilot study (see section Pilot Experiment).
2RGB coordinates for each side of the cube. Front: (230, 159, 0). Back: (86, 180, 233). Bottom: (0, 158, 115). Top: (240, 228, 66). Right: (213,
94, 0). Left: (0, 114, 178).
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Figure 3. Construction of choice set of multi-attribute visual decision task from budget and prices. Note. Choice sets for four
different exemplars and sets of prices. Exemplars are shown for each example in the square in the upper right corner of each
panel. From (a–d ) top left to bottom right: p1 = (1, 1), p2 = (3, 10), p3 = (10, 3), p4 = (3, 3). The size of the budget (set to
m = 100) relative to the prices determines how similar the choice set stimuli are oriented to the exemplar overall. Hence, the
choice set stimuli in (a) are overall more similarly oriented to their respective exemplar than the choice set stimuli in (d ). The
price ratio of the attributes determines the trade-off ratio of the X- and Y-orientation. Hence, the choice set stimuli in (b) are
generally more similarly oriented to their respective exemplar along the Y-axis and less similarly oriented along the X-axis
compared to (c) and vice versa. Axiomatic choice theory proposes that subjective similarity increases as a function of how far a
choice object is located to (b) (indicated by the dashed line).
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The task of the participants was, therefore, to mentally rotate each stimulus of the choice set until it
matches the previously shown exemplar and evaluate which of the stimuli required the least mental
rotation overall.

Framed in terms of revealed preference theory, each choice trial i was constructed from a budget of
m = 100 tokens. A pair of prices pi ¼ ( pX�ori

i , pX�ori
i ) was chosen uniform randomly from a numeric range

of 1 to 3 and 1 to 10. The ranges were assigned to the prices randomly for each trial.
In value-based choice, the price of a good is the cost required to obtain a unit of this good. The budget

line then constitutes all combinations of goods affordable spending a fixed budget. Thus, prices and
budgets lines are constraints that restrict the possible choice set of combinations of goods out of all
available goods. Similarly, the prices and budgets in our multi-attribute choice task constrained the
choice set of visual objects out of all possible visual objects characterized by specific attribute values
(figure 3). Given a fixed budget, the prices determined how much ‘similarity’ to the exemplar a
participant could ‘purchase’ along with a given orientation axis. The ‘cheaper’ a given dimension, the
more similarity to the exemplar on that dimension a participant could afford.

The five visual objects were then generated as equidistant points covering the entire budget line

xY�ori
i ¼ m

pY�ori
i

� xX�ori
i � pX�ori

i =pY�ori
i :

Consequently, the choice set always included the extreme objects xi,0 ¼ (m=pX�ori
i , 0) and

xi,m ¼ (0, m=pY�ori
i ). An attribute value of xX�ori

i ¼ 0 corresponded to an orientation difference of 30
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degrees to the exemplar along the X-axis. With increased values of the X-orientation attribute, the choice
object was turned towards the exemplar position along the X-axis. A single unit size amounted to 0.3
degree turn. An attribute value of xX�ori

i ¼ 100 corresponded to matching orientation to the exemplar
along the X-axis. Likewise, an attribute value of xY�ori

i ¼ 0 corresponded to an orientation difference of
30 degrees to the exemplar along the Y-axis. With increased values of the Y-orientation attribute, the
choice object was turned towards the exemplar position along the Y-axis. A single unit size amounted
to 0.3 degree turn. An attribute value of xy�ori

i ¼ 100 corresponded to matching orientation to the
exemplar.

Participants received in-depth instructions about the task (see appendix). Further, they were presented
with an animated rotating cube to familiarize with the cube itself.3 Participants then first solved a practice
block of 10 trials with a 1 s RI. This practice block served for the participants to familiarize with the design.
Choices from the practice block were not included in the analysis. After the practice block, participants
were asked to turn to the experimenter in case of questions. Then they solved two consecutive blocks of
20 trials each. For each test block, each participant was assigned a uniform random RI between 0 and
30 s (please refer to paragraph ‘Floor and ceiling effects’ below for a discussion of the optimal interval
length). In total, participants made 20 decisions each for two distinct RIs.

After participants had completed the second test block, they solved a similar exemplar reconstruction
task as quality control and manipulation check. The first three screens of each trial were equivalent to the
procedure of the main task. Each trial started with the presentation of a fixation cross. Next, participants
were presented with an exemplar cube with a certain orientation along the X- and Y-axis for 5 s. Then,
participants were presented with a mask of 10 randomly oriented cubes (figure 2) for a certain RI. Each
participant was assigned a RI of either 1, 5, 10 or 30 s for the memory reconstruction task. After the RI,
participants were again presented with a single cube similar to the exemplar. The cube randomly
matched the exemplar regarding either the X- or the Y-orientation, while the initial complementary
orientation was chosen uniform randomly. Participants then had to turn the cube on the screen to
match the exemplar regarding the complementary orientation using the arrow keys on the keyboard.
Importantly, it was unknown to the participants whether they would have to reconstruct the X- or Y-
orientation both during the presentation time and the RI. Participants solved 50 trials of the
reconstruction task. Importantly, we did not use the results from the reconstruction task for our main
analyses but as a manipulation check.

After completion of the reconstruction task, participants were debriefed about the goals of the study
in written form and reimbursed via course credit.

The experimental task was presented with jsPsych [28]. All stimuli were presented on a Lenovo
ThinkPad T590 laptop. Subjects were seated 30 cm away from the monitor in a dimly lighted room.

2.4. Revealed preference theory for multi-attribute visual choice
We measured consistency in MAVC, i.e. the degree of consistency in weighting the two orientation
dimensions when comparing the memorized exemplar with the choice set. A participant would act
consistent, for example, if they assigned more weight to orientation similarity to the exemplar along with
one axis when it was expensive, and less weight when it was cheap. Revealed preference theory can be
used to quantify the level of inconsistency in weighting the visual attributes in a straight forward manner.

Let N [ N be the number of different attributes of a visual object.
Following Nosofsky [18], let X ¼ RN

þ be the non-negative, N-dimensional space of visual objects. Let
P ¼ RN

þ be the non-negative, N-dimensional space of prices of attribute similarities to the exemplar. Let
M ¼ Rþ be the non-negative, one-dimensional space of budgets. Let I ¼ i, j . . . [ N denote observations
of choice.

Let xi∈X be the chosen visual object of an observation i∈ I. Each visual object xi is a N-dimensional
vector of the shape xi ¼ (x1i ,x

2
i , . . . ,x

N
i ), with each scalar component xni representing the similarity of the

visual object xi with regard to attribute n.
Let pi∈ P be the given prices of attribute similarities of an observation i∈ I. Each prices pi are a

N-dimensional vector of the shape pi ¼ ( p1i ,p
2
i , . . . ,p

N
i ), with each scalar component pni representing the

price of similarity to the exemplar with regard to attribute n per unit size.
Then, the scalar product xipj represents the total price of a visual object xi at some prices pj. Let mi∈M

be the given budget of an observation i∈ I. We assume, that a decision maker spends all her budget so
that xipi ¼ mi 8i [ I.
3For an impression visit: https://fjnitsch.github.io/files/html/Rotating_Cube.html

https://fjnitsch.github.io/files/html/Rotating_Cube.html
https://fjnitsch.github.io/files/html/Rotating_Cube.html
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Definition 1 (Direct Revealed Visual Preference). A visual object xi is directly revealed preferred to
another visual object xj if and only if xjpi≤mi and xi≠ xj. Then, we denote xiRDxj.

Definition 2 (Revealed Visual Preference). A visual object xi is revealed preferred to another visual
object xj if there exists a transitive preference relation xiRDxk,xkRDxl… xmRDxn, xnRDxj between both
bundles. We denote xiRxj. R is the transitive closure of RD.

Definition 3 (Strict Direct Revealed Visual Preference). A visual object xi is strictly directly revealed
preferred to another visual object xj if and only if xjpi <mi. Then, we denote xiPDxj.

Axiom 1 (Generalized Axiom of Revealed Visual Preference). xiR xj ! :(xjPDxi) 8i,j [ I.
Axiom 1 allows us to directly test multi-attribute perceptual choices for consistency. It is a necessary

and sufficient condition for the choices to be rationalized by a monotonic concave attribute integration
function and, thus, adherence to the GCM of categorization. If the choice data pass Axiom 1, this
means that choices are made as if integrated subjective similarity to the exemplar is a function of
objective similarity along with each attribute dimension (figure 3). A simple example of such an
integration function could be that subjective similarity is the weighed sum of the similarity along with
each attribute dimension. As one anonymous reviewer correctly pointed out, mental rotation may not
necessarily be performed in an independent, piecewise fashion but possibly also in a holistic mode
[29], at least for some participants [30]. We want to emphasize that any concave monotonic similarity
function is consistent with revealed preference theory. Hence, an independent (i.e. additive) treatment
of the two rotation axes is not required for our model.

However, contrary to Nosofsky [17], we do not need to make assumptions regarding the parametric
form of such an integration function. Conversely, if the data do not pass Axiom 1 no GCM-style
integration function of any monotonic concave specification can rationalize the data.

2.5. Preprocessing
For each test block and participant, we calculated the critical cost-efficiency index (CCEI) [5,31,32]. The
CCEI can be interpreted as how consistently multiple attributes of choice options are integrated into a
decision value. The CCEI denotes the ‘amount by which each budget constraint must be adjusted in
order to remove all violations of GARP’ [33, p. 1927]. Computationally, the CCEI presents a relaxation
of Axiom 1, so that only xiR xj ! :(xjpj � CCEI . xipj) 8i,j [ I must hold. It ranges from zero to one.
A value of one denotes perfect consistency: the attributes are weighed consistently across all choices.
The CCEI approaches zero as choices become increasingly inconsistent, which means that choice
option attributes are weighed inconsistently across different trials. The CCEI is the most common
indicator of compliance with choice-consistency as defined by revealed preference theory and has
been applied in value-based choice in various domains [34]. Further, we explored the robustness of
our results using similar indices such as the money pump index [35], the Houtman–Maks index [36]
and the minimum cost index [37]. However, since all of these metrics measure slightly different
constructs, we restrained our preregistered analysis to the CCEI.

2.6. Analysis pipeline
Per participant, the data from one test block were randomly selected for testing for an inverse relationship
of RI and choice-consistency, Bayes factor model comparison and parameter estimation. We call these
data training set. The other test block was used to replicate our results in a new dataset. Therefore,
these data were not used for other analyses. We call these data test set.

For all analyses, we used a Bayesian framework of inference. Bayesian statistics allows us to express
confidence that a parameter is within a certain range, to extend parameter estimation naturally for
complicated models, to express evidence for or against hypotheses on a continuous scale and to
monitor evidence accumulation [38].

All our analyses were conducted in RStudio [39]. We used the following R packages: BayesFactor [40],
runjags [41], Tidyverse [42] and patchwork [43]. Further, we used the JAGS software [44] for the analysis
of Bayesian graphical models.

2.6.1. H1: test for an inverse relationship of retention interval and choice-consistency

In order to test for an inverse relationship of RI and choice-consistency, we calculated Kendall’s Tau in the
training set. Compared to Pearson’s r, it is robust to outliers and violations of normality and expresses
dependence in terms of monotonicity instead of linearity [45]. This is important, as we neither
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expected choice-consistency (index ranging from 0 to 1) nor the RI (uniformly sampled from an interval
of 0 to 30 s) to be normally distributed, nor both variables to have a linear relationship. We followed the
exact procedure proposed by van Doorn et al. [45] to test for an inverse relationship of RI and choice-
consistency using Bayes factor analysis for Kendall’s Tau.

2.6.2. H2: Bayes factor model comparison of exponential and null model

In order to gain further insights into the relationship of RI and choice-consistency, we planned to test
which model is supported more strongly by the data of the training set (but see section Interpretative
Plan and results for H1 as to why we did not proceed to test this hypothesis). For this, we planned to
use Bayes factor model comparison via the product space method [46]. We planned to test two
candidate models against each other, which are specified in the following sections. We assumed both
models to have equal prior probabilities.

pM1 ¼ pM2 ¼ 0:5:

The first candidate is inspired by forgetting models of item recall [25]; the second model is a null
model assuming no effect of the RI on choice-consistency. They give rise to observed participant
choice-consistency, given a RI.

Both candidate models are of the general form

CCEIt � Normal(mt,s),

with CCEIt, σ∈ [0, 1]. CCEI denotes the CCEI of a participant for one test block, and t denotes the
assigned RI for that block (ranging from 0 to 30 s). σ accounts for random noise in the data. We
assume all parameter values for σ to be equally likely a priori.

s � Beta(1,1):

μt denotes the expected choice-consistency given a RI and is specific to the model candidates.

2.6.2.1. Exponential model
The first candidate model assumes that choice-consistency decreases exponentially with retention time.
This means that the decreasing rate of consistency is constant over retention time. Following Averell &
Heathcote [25], the function can be formalized in the following way:

mt ¼ aþ (1� a)� b� e�a�t:

The parameter a∈ [0, 1] determines an asymptotical minimum level of choice-consistency after an
infinite RI. The parameter b∈ [0, 1] determines choice-consistency at t = 0, which allows for imperfect
choice-consistency unconditional on time-dependent processes when b < 1. The parameter α∈ [0, 1]
determines the retention time-constant decreasing rate of consistency. We assume that all parameter
values are equally likely a priori.

Figure 4 displays a graphical representation of the model including prior specifications for all
parameters.

2.6.2.2. Null model
The second candidate model assumes that choice-consistency does not decrease as a function of the RI.
The expected value of the choice-consistency distribution is, therefore, a constant:

mt ¼ c:

The parameter c∈ [0, 1] determines the expected value of the choice-consistency. We assume that all
parameter values for c are equally likely a priori:

c � Beta(1,1):

2.6.3. H3: replication for the test set

In order to test whether the relative advantage in support by the data for the exponential model in
comparison to the null model replicates to a new dataset, we planned to obtain the replication Bayes



a b

mntn

CCEIn

CCEIn ~ Gaussian(0,1)(mn, sn)

tn ~ uniform (0,30)

mn ¨ a + (1–a)xe–axtn

s ~ Beta(1,1)

a ~ Beta(1,1)

b ~ Beta(1,1)

a ~ Beta(1,1)

s

a

n = 1,…,N

Figure 4. Graphical exponential model of the relationship of retention interval and choice-consistency. Note. n∈ N denotes a single
data point corresponding to a test block of a particular participant. tn denotes the retention interval of a given observation. μn
denotes the expected choice-consistency of a given observation. CCEIn denotes the observed choice-consistency of a given
observation. The parameter a determines an asymptotical minimum level of choice-consistency after an infinite RI. The
parameter b determines choice-consistency at t = 0, which allows for imperfect choice-consistency unconditional on time-
dependent processes when b < 1. The parameter α determines the constant decreasing rate of consistency. We assumed that
all parameter values are equally likely a priori. Nodes with dark background represent observed variables, and nodes with
white background represent latent variables. Nodes with single-line borders represent stochastic variables, and nodes with
double-line borders represent deterministic variables.
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factor using the held out test set using the method described by Ly et al. ([47]; but see section
Interpretative Plan and results for H1 as to why we did not proceed to test this hypothesis). The
replication Bayes factor is given by Bayes factor for the coerced dataset divided by the Bayes factor for
the training set (obtained for H2):

BF10(dtestjdtrain) ¼ BF10(dtest, dtrain)
BF10(dtrain)

:

This evidence updating method does not require approximations and is especially useful for complex
models as in our application case.

2.7. Interpretative plan
We followed the usual framework [48] for interpreting Bayes factors, which means that we considered a
Bayes factor of BF≥ 10 as strong evidence for a hypothesis. Table 1 summarizes the interpretative plan for
all hypotheses.

We collected further data until we reached a conclusive result for all hypotheses.
H1: should we find strong support for an inverse relationship of RI and choice-consistency, we would

conclude that choice-consistency in MAVC depends on the memory representation strength of exemplars.
Should we find strong evidence against an inverse relationship of RI and choice-consistency, this would
question the role of memory representation of exemplars in MAVC. It could be concluded that choice-
consistency is robust to indefinite goal representations. In this case, we would not proceed to test H2 and H3.

H2: should we find strong evidence, that the exponential model of the relationship of RI and choice-
consistency is supported more strongly by the data than the null model, we would interpret this as
preliminary evidence for the validity of the exponential model. However, a definitive interpretation
would require the generalizability of the results for the test set. Furthermore, our statistical tests would
only collect relative evidence for one model over another. It would still be possible that the true model
is outside our model space. Therefore, careful inspection of the visualizations of the model predictions
would be required (see figures 5 and 6). Should we find strong evidence in support of the null model,
this would question the validity of an exponential model specifically, given positive evidence for H1.
Again, a definitive interpretation would require the generalizability of the results for the test set.

H3: should we find strong evidence that the relative advantage in support by the data for the
exponential model in comparison to the null model replicates to a new dataset, we would interpret



Table 1. Summary of statistical interpretation criteria for each hypothesis.

hypothesis BF≥ 10 BF≤ 0.1 0.1 < BF < 10

H1: inverse relationship of RI and

choice-consistency

strong support for

inverse relationship

strong support against

inverse relationship

inconclusive, larger

N required

H2: exponential model is supported

more strongly by the data than

null model

strong support for

exponential model

strong support for null

model

inconclusive, larger

N required

H3: the finding of H2 replicates to

a new dataset

strong support for

replication to a new

dataset

strong support against a

replication to a new

dataset

inconclusive, larger

N required
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Figure 5. Scatterplot of RI and choice-consistency with histograms of marginal distributions. Note. Data were simulated for 300
virtual participants using the exponential model with parameters a = 0.4, b = 0.9, α = 0.3, σ = 0.1. The marginal distribution
of the RI is, trivially, uniform. Importantly, the marginal distribution of choice-consistency is a right-tailed Gaussian, meaning a
tail for large consistency values.
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this as further evidence for the validity of the exponential model. Should the replication Bayes factor
favour the null model, this would question the validity of an exponential model specifically, given
positive evidence for H1. Again, our statistical tests would only collect relative evidence for one
model over another. Careful inspection of the visualizations of the model predictions would be
required (figures 5 and 6).

Should we find conflicting evidence for H2 and H3, we would use the Bayes factor for the complete
dataset (BF10(dtest, dtrain)) to guide our interpretation. The Bayesian model comparison using the complete
dataset quantifies the evidence for or against each model in light of all data. We would use the same
interpretation framework as before, which means that we consider a Bayes factor of BF≥ 10 as
conclusive evidence.
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Figure 6. Scatterplots of RI and choice-consistency overlaid with posterior predictions. Note. The black line shows the median
predictions, and the grey lines show the 95% highest density intervals. (a,b) The training set; (c,d ) the test set. (a,c) Posterior
predictions of the exponential model; (b,d ) posterior predictions of the null model. Training and test sets were simulated for
300 virtual participants using the exponential model with parameters a = 0.4, b = 0.9, α = 0.3, σ = 0.1. While the
exponential model predicts the pattern of the data with relatively little uncertainty, the null model makes very vague
predictions with possible values covering almost half of the variable space. Further, the null model does not predict the trend
of the data for small RIs. Relative to the training set performance of each model, the exponential model also generalizes
slightly better to the test set.
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2.8. Data collection plan/power analysis

2.8.1. Inferential power

Our data collection plan is based on a Bayesian stopping rule: we collected data until we reached a Bayes
factor of BF≥ 10∨BF≤ 0.1 or a maximum feasible sample size of N = 500.

2.8.2. Sensitivity of choice-consistency test

In order to make meaningful statements about the influence of memory processes, it is not only necessary
to experimentally manipulate these memory processes with a sufficient effect size but also to measure
choice-consistency with sufficiently sensitive measure. The sensitivity of our behavioural task to detect
violations of choice-consistency can be approximated using a simulation study [49]. We simulated a
dataset of 1000 virtual participants that made uniform random choices from 20 choice sets constructed
as specified for our experiment (see Procedure). Results showed that 99% of the virtual participants
violated choice-consistency at least once with a median CCEI of 0.389 (figure 7).

2.9. Specification of reality checks
First, to ensure that our RI manipulation is effective, we tried to replicate the effect of the RI on absolute
reconstruction error of exemplars from memory that we found in our pilot experiment (see pilot
experiment) in our control task. Specifically, we wanted to find strong evidence (Bayes factor of at
least BF≥ 10) favouring a one-way ANOVA style model including the four-step RI factor over a null
model. Inference was based on the replication Bayes factor fully using the evidence from our pilot
experiment with BF10(dorig) = 1000 [47].
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Figure 7. Histograms of choice-consistency of simulated random behaviour. Note. We simulated a dataset of 1000 virtual participants
that made uniform random choices from 20 choice sets constructed as specified for our experiment (see Procedure). (a) The distribution of
the number of inconsistent choices; 99% of the virtual participants committed at least one inconsistent choice. The median number if
inconsistent choices (16) is indicated by the dashed vertical line. (b) The distribution of the CCEI. 99% of the virtual participants had a CCEI
lower than 0.90. 97% of participants had a CCEI lower than 0.80. The median CCEI (0.37) is indicated by the dashed vertical line. Overall,
our experimental task provides sufficient sensitivity to detect inconsistent choices. Note that of all 1000 virtual participants only a single
one had a CCEI of 1. Importantly, this participant also did not violate the revealed preference axioms (0 inconsistent choices). We are,
therefore, confident that our design also minimizes cost-efficient inconsistent choices which would undermine the sensitivity of the CCEI
measure specifically [50].
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We used the JAGS software [44] to analyse our Bayesian graphical models. To assess convergence, we
used trace plots of the Markov chain Monte Carlo simulations and smoothed density plots of the
parameter estimates [51].

Following Blaha [52], we think that visualization is an important reality check to see whether the data
look like we expected and hypothesized. Therefore, we planned to create two main plots for visual
qualitative checks of the data and models.

First, we created a scatter plot of RI and choice-consistency in the training set together with histograms
of the marginal distributions. This allowed for a visual inspection of the relationship of both variables as
well as the marginal distributions. We did not want to see choice-consistency increase as a function of RI, as
such pattern is not covered by our model space. The marginal distribution of the RI should, trivially, be
uniform (as generated by the experimental task). The marginal distribution of the choice-consistency
should, ideally, be a right-tailed Gaussian, meaning a tail for large consistency values. Figure 5 shows
such a plot for data simulated from the exponential model.

Second, we planned to create a plot that is overlaying scatter plots of RI and choice-consistency in the
training set with the posterior predictive distributions of the exponential model and the null model (but
see section Interpretative Plan and results for H1 as to why we did not proceed with our computational
modelling). This would allow us to visually inspect how well the models can explain the data and,
further, if there are any important qualitative differences between predictions and data. This is an
important step to inform future modelling efforts and to identify systematic short comings of a model.
Further, we would create the same plots for RI and choice-consistency in the test set overlaid with the
out-of-sample posterior predictions of both models to qualitatively evaluate the generalizability of the
models (but see section Interpretative Plan and results for H1 as to why we did not proceed with our
computational modelling). Figure 6 shows such plots for data simulated from the exponential model.
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2.9.1. Floor and ceiling effects

Should we find that choice-consistency is either near perfect or at very low levels across all RIs, this
would indicate ceiling or floor effects respectively. While this is theoretically possible (e.g. in the case
of an ineffective RI manipulation), we reduced the likelihood of finding such a pattern by using a
continuous manipulation of the RI instead of a factorial design. Therefore, our design covered a wide
range of RIs (interval of 30 s) instead of 2 to 3 RIs that a factorial design would cover. Still, it was not
possible to entirely rule out the possibility of an ineffective RI manipulation on theoretical grounds
only. Therefore, we conducted a pilot experiment to demonstrate the effectiveness of our manipulation
using the control task from our main experiment (see below).

2.9.2. Further limitations

As one anonymous reviewer pointed out, our MAVC paradigm does not include a no-choice option.
Intuitively, for some trials, it would be difficult for participants to make a similarity judgement.
However, we decided not to include a no-choice option in our paradigm as one core assumption of
revealed preference theory is that there is a well-defined preference structure [5], and this also holds
for difficult decisions. Therefore, asking participants to make a choice for difficult decisions is part of
a rigorous test of revealed preference choice-consistency. Still, practically, this could have introduced
additional noise into the decision behaviour of participants. While the current registered report cannot
entirely address this aspect of insufficiently defined preferences, future research should provide both
theoretical and empirical accounts on the role of non-decisions for choice-consistency.

2.10. Pilot experiment
We conducted a pilot experiment to validate the effectiveness of our RI manipulation. Specifically, we
wanted to demonstrate that our RI manipulation is sufficient to blur the memory representation of the
exemplar. Furthermore, we explored the influence of presentation time of the exemplar on the
memory representation strength.

2.10.1. Methods

2.10.1.1. Procedure
The first three screens of each trial were equivalent to the procedure of the experiment for the here described
registered report (figure 2). Each trial startedwith the presentation of a fixation cross. Participants were then
presented with an exemplar cube with a certain orientation along the X- and Y-axis (see procedure of
registered report) for either 1, 5, 10 or 30 s. Then, participants were presented with a mask of 10
randomly oriented cubes (figure 2) for a certain RI. Importantly, the RI in the pilot experiment was not
fixed per participant. The RI lasted either 1, 5, 10 or 30 s. After the RI, participants were again presented
with a single cube similar to the exemplar. The cube randomly matched the exemplar either regarding
the X- or the Y-orientation, while the initial complementary orientation was chosen uniform randomly.
Participants then had to turn the cube on the screen to match the exemplar regarding the complementary
orientation using the arrow keys. Importantly, it was unknown to the participants whether they had to
reconstruct the X- or Y-orientation both during the presentation time and the RI. Participants solved 10
for each factorial combination of the presentation times and RIs in random order.

2.10.1.2. Sample characteristics and exclusion criteria
We included a total of 25 participants (21 women, 4 men; age: M = 24, range = 18−39) for our pilot
experiment. The sample size was not determined a priori. Instead we used a Bayesian stopping rule,
recruiting further participants until we reached a Bayes factor of at least BF≥ 10 for our hypothesis
test. Importantly, the sample size is smaller than the minimal sample size we plan to recruit for the
here described registered report. Participants were recruited from the same population we target for
the here described registered report.

However, the study was conducted as an online experiment due to the ongoing COVID-19 crisis. It is
intuitive that participants might be less attentive during online experiments than during laboratory-
based experiments due to the uncontrolled way in which participants solve the task. Therefore, we
assessed reaction times besides task performance and excluded single trials with reaction times



royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.8:200308
15

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

20
 O

ct
ob

er
 2

02
1 
deviating more than three standard deviations from the grand mean. Note that this threshold amounted
to about 30 s for a single trial. Hence, we are confident to not have excluded any meaningful data while
considerably reducing measurement noise.

The study was approved by the local ethics board of Heinrich-Heine-University and was conducted
in accordance with the Declaration of Helsinki. Participants were reimbursed by course credit.

2.10.1.3. Statistical analysis
We operationalized the memory representation strength of the exemplar as the absolute error with which its
orientation could be reconstructed by the participants. We considered an orientation of 0 degrees and 360
degrees as equivalent. For example, if the orientation of the exemplar cube on the axis of interest is 90
degrees and the orientation of the reconstructed cube on that axis is 360, the absolute error is 90 and not
270. The absolute error can therefore range between 0 degrees and 180 degrees. The exact formula is given by

Absolute Error ¼ jjOriExemplar �OriReconstructedj � 180j:

We calculated a repeated measures Bayesian ANOVA in the ‘BayesFactor’ R package using the non-
informative default priors [53]. We considered a Bayes factor equal to or larger than 10 regarding the
main effect of the RI to be conclusive for or against our hypothesis. To verify the direction of the effect we
considered the trend of the means of each factor level. Further, we exploratively inspected the evidence
for or against a main effect of the presentation time and a possible interaction effect of both factors.

2.10.2. Results

We found that an ANOVA style model including both main effects and a random subject intercept but
no interaction term to be the most likely model given the data. Specifically, this model was BF10 = 895082
(±0.94%) times more likely than the null model (including only the random subject intercept) given the
data (figure 8).

2.10.2.1. Retention interval
To quantify the evidence for an effect of the RI factor, we compared the evidence of the most likely model
with the evidence for a model including only the main effect of the presentation time and the random
subject intercept. We found that there was BF10 = 1000 ± 1.13% times more evidence for the inclusion
of the RI factor. We interpret this as definitive evidence. Inspection of the trend of means reveals that
there is a positive relationship of RI and absolute error of reconstruction (figure 8).

2.10.2.2. Presentation time
To quantify the evidence for an effect of the presentation time factor, we compared the evidence for the
most likely model with the evidence for a model including only the main effect of the RI and the random
subject intercept. We found that there was BF10 = 1005 ± (1.15%) times more evidence for the inclusion of
the presentation time factor. We interpret this as definitive evidence. Inspection of the trend of means
reveals that there is a negative relationship of presentation time and absolute error of reconstruction
(figure 8). Note, however, that is was an explorative analysis.

2.10.2.3. Interaction retention interval × presentation time
To quantify the evidence against an interaction effect of both factors, we compared the evidence of themost
likelymodel with the evidence for amodel including bothmain effects, the random subject intercept and an
interaction term.We found that therewasBF01 = 44446 (±2.11%) timesmore evidence for the exclusion of the
interaction term.We interpret this as definitive evidence. Note, however, that is was an explorative analysis.

2.10.3. Discussion

We conducted a pilot experiment to validate the effectiveness of our RI manipulation. We showed that
the precision of the orientation reconstruction of an exemplar from memory decreases with retention time
over an interval of 30 s. Therefore, we are confident that the planned RI manipulation of the here
described registered report is effective to weaken the memory representation strength of an exemplar.
Further, we explored the influence of different presentation times on orientation reconstruction
precision. We found that precision increases with presentation time. In the context of our registered
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report, it is important that the memory representation strength freely varies among different RIs for a
given presentation time. Descriptively, the variance of the absolute error in reconstruction is highest
for a presentation time of 1 s. However, also the mean absolute error is highest for a presentation time
of 1 s. A presentation time of 5 s represents a compromise with the second highest variance and
second highest mean of the absolute error in reconstruction.
3. Results
3.1. Sample characteristics
For our main experiment, we included 77 participants (56 women, 21 men; age: M = 22, range = 18−40;
education: 72 completed high school, 5 completed a university degree) according to our inclusion criteria
until reaching the preregistered stopping rule of our analysis plan.

3.2. Preregistered analyses
As outlined above, our statistical analyses use a Bayesian framework of inference, specifically the Bayes
factor approach to model comparison. Bayes factors express the relative degree of evidence for one model
over another that is the ratio of probabilities of observing the data under each model [54].

3.2.1. Reality check: effect of retention interval on memory representation

To quantify the evidence for an effect of the RI factor on memory representation strength, we compared a
one-way ANOVA style model including the 4-step RI factor to a null model. We found conclusive
evidence for the RI model for the new and the full dataset (including our pilot data), as well as for the
successful replication (BF10(dnew) = 32.894 ± 0.01%, BF10(dfull) = 46717770 ± 0.01%, BFReplication = 44623.3;
figure 9). Hence, we can conclude that our RI manipulation was effective.

3.2.2. H1: test for an inverse relationship of retention interval and choice-consistency

Next, we tested in the training set whether choice-consistency as operationalized by the CCEI decreased
with an increasing RI. Results showed conclusive evidence against our hypothesis (BF10 = 0.047;
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figure 10). The result held for other specifications of choice-consistency, namely the Houtman–
Maks index, and approximations of the money pump index and minimum cost index (all BF10 < 0.1).

3.2.3. H2 and H3: Bayes factor model comparison of exponential and null model

Following our interpretation plan (table 1), we did not proceed to test H2 and H3, given our negative
result for H1.

3.2.4. Floor and ceiling effects

As apparent in figure 10, the CCEI of our participants in the training data was overall surprisingly low
(median = 0.299, SD = 0.229). In order to control for a potential floor effect, we used a Bayesian Mann–
Whitney U test to control whether our participants were more consistent than an equal-sized
subsample of our random simulated data (figure 11a). Results showed strong evidence against this,
indicating a potential floor effect in our data (BF10 = 0.094).

3.3. Exploratory analysis

3.3.1. Reliability analysis

In an attempt to further understand the quality of our data beyond our preregistered quality controls, we
conducted a descriptive test–retest reliability analysis of the CCEI for the training and test set. As we
reported recently elsewhere [55], there are concerns regarding the measurement reliability of the CCEI,
which is especially problematic for correlational designs such as the one of the current study [56].
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Specifically, tasks designed to show robust between-group effects and, thus, low between-subject variability
in the outcome measure are at risk for showing low test–retest reliability. Another risk factor specific to the
CCEI is that the measure is dependent only on the magnitude of the most severe violation (see
Preprocessing) and, thus, vulnerable to outliers. Our results indicated essentially no reliability of the CCEI
between training and test set in the current study (r =−0.033). This was not driven by the difference in
RIs of both measurements, or by low between-subject variability of the measure (figure 11a,b). A similar
result showed for the money pump index (r= 0.023). However, interestingly, the Houtman–Maks index
and the minimum cost index showed a much higher (albeit still poor) test–retest reliability (HMI: r=
0.303, MCI: r = 0.353; figure 11c–e), which might be attributed to less vulnerability to outliers.

3.3.2. Task difficulty

Given the results reported above and oral feedback from our participants, we formed the post hoc hypothesis
that the generally low choice-consistency might be driven by too high a difficulty of discriminating the
different X- and Y-orientations of the choice objects. To further explore this notion, we compared the mean
absolute error in the reconstruction task, as an upper limit to the discriminatory performance, to the mean
increment difference of orientation along the X- or Y-axis in the choice set, using bootstrapping. Results
showed that the mean increment difference was generally lower than mean reconstruction error, tentatively
suggesting a high difficulty of discriminating between the choice objects (figure 12).
4. Discussion
In this registered report, we set out to experimentally test the influence of memory retrieval of exemplars
on choice-consistency in a novel visual choice paradigm. After a short RI, participants had to select one
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out of a choice set of five three-dimensional cubes that have the subjectively most similar orientation
along the X- and Y-axis to the exemplar. The choice set stimuli represented a variable trade-off of
similarity to the exemplar regarding the two attributes X- and Y-orientation. We manipulated
memory retrieval by varying the duration of the RI between exemplar presentation and choice.

Using a reconstruction task as a manipulation check of our RI intervention, we could show and
replicate the pattern of decreasing memory accuracy with increasing retention time in a pilot experiment
and in our preregistered study, which confirmed the effectiveness and reliability of our manipulation.

Given this, we found strong evidence against our first hypothesis that choice-consistency, as
operationalized by the CCEI, decreases with increasing retention time. Further, this result held for
robustness checks using three similar choice-consistency indices. Given our preregistered interpretation
plan we did not proceed to test our more specific, model-based hypotheses.

4.1. Limitations
However, our preregistered quality controls revealed an overall surprisingly low choice-consistency of
our participants even for short RIs that proved to be non-discernable from that of simulated random
behaviour. In addition, an exploratory analysis showed essentially no test–retest reliability of the CCEI
between the training and the test set. This was not driven by retention time differences between the
two measurements. Taken together, this suggests the presence of a floor effect in our data and, thus,
low data quality for conclusively evaluating our hypotheses.

Generally, the lack and low reliability of choice-consistency indicates that our participants did not
consistently integrate deviations in the X- and Y-dimensions of the choice set stimuli to the exemplar,
meaning there was no well-behaved integration function, and this was also the case for short retention
times. As the performance in the reconstruction task was generally good (perfect reconstruction in
about 42% of trials), it is unlikely that the low consistency level was driven by too long RIs.
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Another explanation for the overall low choice-consistency could be that the discrimination between the
different X- and Y-orientations of the choice objects was too difficult. This was also, anecdotally, suggested
in oral feedback of our participants during the data collection. To further explore this notion, we compared
the mean absolute error in the reconstruction task, as an upper limit to the discriminatory performance,
to the mean increment difference of orientation along the X- or Y-axis in the choice set, recovered from
the task parameters, using bootstrapping. Results showed that the mean increment difference was
generally lower than mean reconstruction error, tentatively suggesting a high difficulty of discriminating
between the choice objects. As all choice-consistency indices quantify performance only relative to the
increment orientation differences of choice objects, numerically low choice-consistency levels can
correspond to only small inconsistencies in degree orientation.
4.2. Future research
Future studies investigating visual choice-consistency should, therefore, establish a sufficient level of
choice-consistency at baseline. This could be achieved, for example, by pilot testing to adjust, in a
group-wise fashion, the increment difference of orientation along the X- or Y-axis in the choice, or on
an individual level by using an adaptive staircase procedure.
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Another important consideration for the design of future studies is the low reliability of choice-
consistency in the present study, but also, generally, in other task domains [55]. While our
correlational design had important benefits for covering a sufficient retention time span and providing
rich data for parametric model fitting, factorial designs are more robust to finding effects in low-
reliability behavioural tasks [56].
publishing.org/journal/rsos
R.Soc.Open

Sci.8:200308
5. Conclusion
In this registered report, we set out to experimentally test the influence of memory retrieval of exemplars
on choice-consistency in a novel visual choice paradigm. Due to unforeseen methodological pitfalls, our
data are inconclusive to the preregistered hypotheses. However, our preregistered quality controls and
additional exploratory analyses offer important insights for the design of future studies.
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Appendix. English translation of instructions for MAVC task
Dear participant,
In the following task, you will be presented with a number of independent decision problems that share a
common format. Each decision problem starts with the presentation of a colourful three-dimensional cube.
The cube will be presented for 5 s. Each side of the cube is identified by a unique colour. Your task is to
memorize the orientation of the cube as good as possible. After the presentation time of 5 s has passed, you
will be presented with a visual mask of 10 similar cubes for up to 30 s. These cubes are irrelevant for the
decision problem and you should not try to memorize their orientation. Finally, you will be presented with
five more cubes in different orientations which will be presented to you in a circle. Your task is to select the
one of those five cubes which has the most similar orientation to the cube which you have been presented
with at the beginning of the decision problem. Before each decision problem you will be shortly presented
with a fixation cross.

ITI: 0.5-1.5 s

PT: 5.0 s

RI: 0–30.0 s

choice

https://osf.io/2vx36/
https://osf.io/2vx36/


royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.8:200308
22

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

20
 O

ct
ob

er
 2

02
1 
Carefully evaluate all five cubes and try to mentally rotate them until they match the memorized cube.
Then select the cube which had to be mentally rotated the least. You have to decide for each decision
problem. If you are unsure about your answer, follow your intuition. There are no wrong or correct
answers. Before the task begins, please take a moment to familiarize yourself with the colourful cube
by inspecting the following animation. All cubes presented in the task will be exact copies of that
cube but in different orientations.

[ANIMATION HERE]

Thank you for familiarizing yourself with the colourful cube. You will now be presented with 10 practice
decision problems. For these practice problems, the choice options will be presented 1 s after the cube
that you have to memorize. Your answers for these practice decisions will not be recorded. Take your
time to familiarize yourself with the task.

You have successfully completed the practice decision problems. Do you have any questions or is
there anything unclear about the task at hand? Then please raise your hand and consult with the
experimenter.

If you have no further questions, then you can proceed now with the first test block. The test block
consists of 20 decision problems. For all 20 decisions, you will be assigned a RI of up to 30 s after the
presentation of the initial cube during which you will see the irrelevant visual mask.

You have successfully completed the first test block. Take a moment to stretch your legs before
continuing.

The next test block again consists of 20 decision problems. For all 20 decisions, you will be assigned a
different RI of up to 30 s after the presentation of the initial cube during which you will see the irrelevant
visual mask.
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