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Decisions between differently timed outcomes are a well-studied topic in as diverse academic disciplines as economics, psychol-
ogy, and behavioral ecology. Humans and other animals have been shown to make these intertemporal choices by hyperbolically 
devaluing rewards as a function of their delays (“delay discounting”), thus often deemed to behave myopically. In behavioral ecology, 
however, intertemporal choices are assumed to meet optimization principles, that is, the maximization of energy or reward rate. Thus 
far, it is unclear how different approaches assuming these 2 currencies, reward devaluation and reward rate maximization, could be 
reconciled. Here, we investigated the degree at which humans (N = 81) discount reward value and maximize reward rate when making 
intertemporal decisions. We found that both hyperbolic discounting and rate maximization well approximated the choices made in a 
range of different intertemporal choice design conditions. Notably, rate maximization rules provided even better fits to the choice data 
than hyperbolic discounting models in all conditions. Interestingly, in contrast to previous findings, rate maximization was universally 
observed in all choice frames, and not confined to foraging settings. Moreover, rate maximization correlated with the degree of hyper-
bolic discounting in all conditions. This finding is in line with the possibility that evolution has favored hyperbolic discounting because it 
subserves reward rate maximization by allowing for flexible adjustment of preference for smaller, sooner or larger, later rewards. Thus, 
rate maximization may be a universal principle that has shaped intertemporal decision making in general and across a wide range of 
choice problems.
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INTRODUCTION
In our daily life, we make countless decisions between delayed 
consequences. These intertemporal decisions shape important 
aspects of  our life, such as education, housing, diet, and financial 
well-being. Intertemporal decision making is well studied in both 
humans and nonhuman animals (Kalenscher et  al. 2005; Rosati 
et  al. 2007; Kalenscher and Pennartz 2008; Sellitto et  al. 2011) 
by as diverse academic disciplines as economics, psychology, and 
behavioral ecology. All these fields share their interest in the typical 
behavior, common to humans and other animals, of  overweight-
ing short-term outcomes or underweighting long-term outcomes 
and, by consequence, of  making impulsive decisions (Kalenscher 
et al. 2005, 2008; Namboodiri and Hussain Shuler 2016). However, 
although trying to explain the same phenomenon—intertemporal 

choice and impulsive decision—the approaches in these different 
disciplines came up with different accounts.

Economics and psychology literature addressed great atten-
tion to intertemporal decision making because the myopic, short-
sighted choice patterns of  humans and other animals represent 
violations of  the efficiency assumptions of  utility maximization and 
time preference in economics (Kalenscher and Pennartz 2008). In 
behavioral economics and psychology, intertemporal choice behav-
ior is typically expressed as delay discounting (Samuelson 1937; 
Kalenscher and Pennartz 2008; Hayden 2016), according to which 
the subjective value of  a delayed reward decreases with increasing 
delay of  its receipt (Frederick et al. 2002; Sellitto et al. 2011).

In both humans and other animals, delay discounting is best 
described by hyperbolic discounting models, which reflect a 
decrease in the subjective value of  a reward with a nonconstant 
decay rate, characterized by a steep decline in subjective value at 
initial delays, and flatter decline at longer delays (Mazur 1984; 
Green and Myerson 1996; Kalenscher and Pennartz 2008) Due 
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to this property, hyperbolic discounting well explains the so-called 
“preference reversals”, which previous exponential discounting 
models failed to account for (e.g., Frederick et  al. 2002; Sellitto 
et  al. 2011). When choosing between smaller-sooner and larger-
later rewards, humans and nonhuman animals often reverse their 
preference when front-end delays are added or subtracted from 
a choice set (Green et  al. 1994; Kirby and Herrnstein 1995). For 
example, even though an individual may prefer (A) €10 today over 
(B) €20 in 6  months, she may prefer (B’) €20 in 1  year over (A’) 
€10 in 6 months (Frederick et al. 2002), despite the discounted util-
ity theory (DUT) in economics (Samuelson 1937) prescribes that a 
rational agent should meet the stationarity axiom and choose option 
A’ over option B’ since she preferred option A before (Fishburn and 
Rubinstein 1982).

Next to the economics approach, humans and nonhuman ani-
mals’ myopic choices have also drawn the attention of  the optimal 
foraging theory in behavioral ecology (Stephens and Krebs 1986; 
Bateson and Kachelnik 1996; see also Hayden 2016 for review). 
Inspired by evolution theory, optimal foraging theory prescribes 
that a Darwinian-fitness-maximizing organism should maximize 
energy intake over time—principle of  energy rate maximiza-
tion—when foraging for food (Pyke et  al. 1977). However, impul-
sive decisions that, as mentioned before, do not meet the efficiency 
assumptions of  utility maximization and time preference in eco-
nomics (Kalenscher and Pennartz 2008), also apparently fail to 
maximize long-term energy rate (Mcdiarmid and Rilling 1965; 
Kalenscher et al. 2005; Kalenscher and Pennartz 2008). To recon-
cile these findings with the assumption in optimal foraging theory 
that evolution should have shaped optimal intertemporal decision 
making, Stephens and colleagues (Stephens and Anderson 2001; 
Stephens et al. 2004) argued that short-sighted, present-biased deci-
sions can result in energy rate maximization, but only in natural for-
aging contexts to which animals’ decision systems are adapted to.

Natural foraging contexts are characterized by sequential back-
ground-foreground problems (Stephens 2008; Rosati and Stevens 
2009) in which one alternative is the background to all other alterna-
tives. For instance, a flying bird spotting a potential food source has 
to decide whether to put its background activity (flying) on hold to 
exploit the potential food source (foreground), or whether to continue 
the exploration of  the environment to find a potentially richer/safer 
source later. The same happens in humans when, for instance, some-
one has to decide whether to accept a job offer and settle or keep 
searching for better opportunities. However, in most laboratory stud-
ies, intertemporal decisions are typically not probed with sequential 
choice problems—so-called patch-designs—that are supposed to have 
high ecological validity, but with binary, mutually exclusive choice 
tasks—so-called self-control tasks: “choose either A  or B”—to which 
subjects are supposedly not adapted to. By consequence, individuals 
have been shown to apparently fail to maximize energy rate in self-
control tasks (Rosati et al. 2007; Kalenscher and Pennartz 2008).

Why does it seem that we and other animals fail to maximize 
long-term energy rate in self-control tasks, although we are thought 
to maximize reward rate? One answer could be that long-term 
energy maximization is achieved because short-sighted decision 
rules that only minimize the delay to the next reward, ignoring 
other task features such as postreward delays (e.g., Blanchard et al. 
2013), automatically also lead to long-term rate (LTR) maximiza-
tion in ecologically valid patch designs (Stephens and Anderson 
2001). Organisms may thus have evolved to implement short-
sighted rules because they lead to LTR maximization in sequential 
choice contexts, even though they result in poor performance on 

binary self-control problems. This has been indeed shown in ani-
mals (Stephens and Anderson 2001; Stephens and McLinn 2003) 
and more recently also in humans (e.g., Schweighofer et  al. 2006; 
Bixter and Luhman 2013; Zarr et al. 2014; Carter et al. 2015).

A striking illustration of  how organisms may implement short-
sighted rules in order to achieve LTR maximization lies again in 
preference reversals—which, as said before, seem to indicate that 
individuals overweight short-term outcomes (Thaler 1981; Benzion 
et  al. 1989) and, from a normative economic perspective, that they 
act against their own future interest. If  we go back to the previous 
example and consider preference reversals from the perspective of  
reward rate maximization, choosing option A  (€10 today) would 
yield a reward rate of  €10 per day, and choosing option B (€20 in 
6 months) would yield a reward rate of  €0.10 per day. The rate max-
imization principle would prescribe choosing option A over option B 
because of  its higher reward rate. However, if  both outcomes were 
then shifted in time by a front-end delay of  6 months, the alterna-
tives would now be option A’: €10 in 6 months—which yields a rate 
of  €0.05 per day—and option B’: €20 in 1  year—which yields a 
rate of  €0.11 per day. While, as said before, the DUT in econom-
ics (Samuelson 1937) prescribes that a rational agent should meet 
the stationarity axiom and choose option A’ since she preferred option 
A before (Fishburn and Rubinstein 1982), option B’ yields a higher 
rate in the new pair, therefore a reward-rate maximizing agent 
should reverse her preference, and choose B’ over A’. Hence, rate 
maximization could only be achieved by a decision rule allowing for 
time-inconsistent preference reversals. Because rate maximization 
models have been developed to account for nonhuman animals’ for-
aging behavior, the logic of  our example may be better understood 
when replacing financial rewards with food rewards. Consider an 
animal that chooses between option A: 2 food-items in 2  s (rate: 1 
item/s) and option B: 4 items in 8  s (rate: 0.5 items/s). The rate 
maximization principle would prescribe choosing option A because 
of  its higher energy rate. If  both outcomes were then shifted in time 
by 10 s, the alternatives would now yield A’: 2 food-items in 10 + 2 s 
(rate: 0.17 items/s) and B’: 4 items in 10 + 8 s (rate: 0.22 items/s). 
Now, even though a hypothetical, economically ideal, and time-con-
sistent forager should choose option A’ over B’, rate maximization 
would prescribe a preference reversal, thus choosing B’ over A’. Note 
that the logic of  these examples still holds when extending them to 
single or repeated choice scenarios with nonexistent (in one-shot 
choices), fixed or variable postreward delays.

To date, it remains unclear, however, whether rate maximiza-
tion and hyperbolic discounting are 2 contradicting, possibly irre-
soluble concepts (Stephens et al. 2004), or whether they are 2 sides 
of  the same coin that, when considered together, can unravel the 
evolutionary mystery of  short-sighted intertemporal choice. Here, 
we address this question through an experiential intertemporal 
choice task. We asked human participants to make both binary 
and sequential intertemporal choices between smaller-sooner and 
larger-later monetary rewards, with immediately experienced 
delays. Crucially, depending on the delay parameters, reward rate 
maximization required choosing the larger-later option in some trial 
blocks, and choosing the smaller-sooner option in other trial-blocks. 
Thus, an ideal optimal forager should flexibly shift her preferences 
between smaller and larger rewards. We adopted a repeated-mea-
sures design with 2 design conditions (self-control vs. patch), which 
enabled us to obtain individual discount rates and rate maximi-
zation scores for each of  them to investigate how human partici-
pants maximize long-term reward rate in comparison to how they 
devalue future rewards.
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METHODS
Participants

We recruited 93 participants (60 female) at the Heinrich-Heine 
University Düsseldorf. Exclusion criteria were psychiatric or psy-
chological disorders, lack of  German language proficiency, smoking 
more than 5 cigarettes per day, drinking more than 1 bottle of  wine 
or 1.5 L beer a day on average, and consumption of  recreational 
illicit drugs more than 2 times a month. These criteria were cho-
sen to avoid drug-related effects on intertemporal decision making 
(Bickel et al. 2012). Participants were between 18 and 45 years old 
(M = 23.2, SD = 5.2) and were enrolled in various study programs 
(language studies: 22; psychology: 13; (business) economics: 9; his-
tory: 8; computer science: 6; law: 6; media and culture: 6; biology: 
5; other studies [n < 5]: 20). Participants received a monetary reim-
bursement consisting of  a show up fee of  3€ plus their earnings 
during one part of  the experiment (see below), which could lead up 
to a total amount of  17€. Payment was received in the form of  a 
personal cheque at the end of  the session. This study was approved 
by the local ethical committee of  the Psychology department at the 
Heinrich-Heine University Düsseldorf.

Materials

General task procedure
Participants made a series of  choices between a smaller-sooner (SS) 
monetary reward and a larger-later (LL) monetary reward. The 
nature of  the task was experiential, that is, delays and rewards were 
real and experienced by the participants. In a within-subject design, 
we manipulated the design of  an intertemporal choice task (sequen-
tial “patch” condition vs. binary “self-control” condition, see below 
and Figure 1).

Each design condition consisted of  6 separate blocks of  trials that 
varied in delay to the smaller-sooner reward as well as the delay to 
the larger-later reward (see Table 1; in our task, the delay indicates 
the time between the decision and the onset of  the reward screen, 
informing the participant about the reward magnitude, see below). 

Each of  the 6 blocks was presented in the self-control as well as the 
patch design (see below and Figure 1). The 3 blocks with the same 
delay to the small reward (i.e., either 3s or 9s) within a task design 
were presented together in a cluster (to maintain some structure in 
the task for participants; note that the blocks in one cluster differed 
in the delay to the larger-later reward only). Within each cluster, the 
blocks were presented in pseudo-random fashion. Participants thus 
completed 2 clusters of  3 blocks each in the self-control design, and 
2 clusters of  3 blocks each in the patch-design. After each cluster, 
participants had a short, approximately 1-min break while the next 
cluster was started. The clusters were presented pseudo-randomly 
as well.

Participants made one decision per trial; the number of  trials per 
block was variable; trials in a block were repeated until the block 
duration elapsed. Block duration was fixed and determined such 
that participants could choose the option with the longest delay at 
least 7 times in each block, including a decision time of  5 s per trial.

Self-control design
In the self-control design condition (see Figure 1), participants made 
binary, binding choices between smaller-sooner and larger-later 
rewards. The smaller-sooner reward consisted of  5 cents and was 
delayed by either 3 s or 9 s. The larger-later reward consisted of  10 
cents, with a delay of  5 s, 10 s, or 15 s (with smaller-sooner delay 
of  3 s), or 11 s, 21 s, or 31 s (with smaller-sooner delay of  9 s). The 
delay of  the larger-later option was varied across 3 blocks of  trials 
in a given condition in a pseudo-random fashion so that each block 
yielded a new pair of  options; delay/reward option pairs were kept 
constant across trials within a block. Trial duration was not fixed; 
the number of  trials per block was variable and depended on block 
duration.

Participants were not instructed about delay and reward mag-
nitudes, but had to learn them by experience. A  trial started with 
the intertrial interval (ITI), indicated by a white cross at the center 
of  the screen, which was fixed at 5 s. The ITI was followed by the 
choice screen, on which 2 differently colored circles were presented 
on each side of  the screen. The different delay/reward combina-
tions were associated with unique circle-colors. Participants indi-
cated their choice on a standard keyboard by pressing the “x” key 
for the left option, and the “m” key for the right option. Key-side 
assignment was also indicated on the screen below the circles for 
participants’ convenience. Participants had unlimited time to make 
their decisions, but after 3 seconds they were prompted by the 
message “please make a choice”, blinking red below the circles on 
the screen. After participants selected one of  the colored circles, 
a dynamic progress bar indicated the delay length until reward 
presentation. After the delay, information about the reward mag-
nitude was shown at the center of  the screen for 2 s, and the cumu-
lated earnings across past trials were additionally shown below the 
reward information. Following reward presentation, the next trial 
started immediately. Trials were repeated within a block until the 
block duration expired. When the block time was up in the middle 
of  a trial, this trial was finished before the next block started.

Patch-design
The 2 clusters with a patch design were economically identical 
to the self-control condition in terms of  delays, rewards, trial and 
block structure, screen composition, information format, as well as 
participant instructions. The only difference to the self-control con-
dition was the sequential nature of  the decision structure: while, in 
the self-control condition, participants made binding binary choices 

Self-control condition
(a)

(b)
Patch condition
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DSS

DSS

DLL - DSS DSS

RLL - RSS

RSS
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RLL LL

LL

DLLLL

LL

LL

SS

SS

SS
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ITI

ITI

ITI

ITI
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ITI
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Figure 1
Task structure in the self-control (A) and patch (B) condition. Choices were 
made between a smaller, sooner (SS) and a larger, later (LL) option. One 
grey circle indicates a reward of  5 cents. ITI: inter-trial interval; D = delay; 
R = reward.
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between the smaller-sooner and larger-later rewards, in the patch 
condition they chose whether to stay in a “reward patch” for a fixed 
delay to obtain a large reward, or “leave the patch” and start a new 
trial after having obtained a small reward (see Figure 1). Sequential 
choice was implemented as follows: each trial started with the ITI 
(5 s), followed by a delay of  3 s (delays were indicated by dynamic 
progress bars as in the self-control condition) or 9 s. Subsequently, 
a reward screen (2  s) indicated that the participant had earned 5 
cents (the smaller-sooner reward magnitude), after which the choice 
screen was presented. Participants indicated their choice on a 
standard keyboard by pressing the “x” key for the left option, and 
the “m” key for the right option. A  choice of  the smaller-sooner 
option resulted in the start of  the next trial (i.e., was followed by the 
ITI of  the next trial) and a choice of  the larger-later option resulted 
in a further delay of  2 s, 7 s, or 12 s in the 3 s smaller-sooner delay 
blocks, or a further delay of  2  s, 12  s, or 32  s in the 9  s smaller-
sooner delay blocks. Following the end of  the delay, a further screen 
indicated that participants earned another 5 cents (thus, resulting in 
a sum of  5 + 5 = 10 cents in this trial, equivalent to the magnitude 
of  a larger-later reward), and the next trial started. Again, the order 
of  delay conditions was pseudo-randomized across blocks.

As mentioned, block duration, trial setup, and general design 
features were identical in the patch- and the self-control condi-
tions. Also, as before, participants were not instructed about the 
outcome parameters, but had to learn them through experience. 
Note that, in the patch condition, the prechoice delays (3 s or 9 s) 
and default rewards (5 cents in all conditions) were identical to the 
smaller-sooner rewards in the self-control condition (see above and 
Figure 1), and the sum of  pre- and post-choice delays in the patch 
condition (5 s, 10 s, and 15 s for blocks 1–3 and 11 s, 21 s, and 31 s 
for blocks 4–6) as well as the sum of  rewards (10 cents) matched the 
larger-later parameters in the self-control condition.

All conditions were fully incentive-compatible and accumulated 
earnings were paid out to the participants after experiment comple-
tion. The task was programmed in Matlab (Mathworks, Inc.) using 
the Cogent Graphics toolbox developed by John Romaya at the 
LON at the Wellcome Department of  Imaging Neuroscience.

Offline delay discounting task
To obtain an offline measure of  the participants’ hyperbolic dis-
count rates, we used a task design similar to the one described by 
Kirby et al. (1999). This enabled us to compare participant’s hyper-
bolic discount rates in a task structure commonly used to measure 
hyperbolic discounting with the hyperbolic discount rates in the 
general task described above. This task estimated the individual dis-
count rates k by assuming a hyperbolic discount function underlying 

choice behavior. The task consisted of  27 choices between hypo-
thetical rewards. In each trial, participants were offered the choice 
between a smaller reward available now and a larger but delayed 
reward. The smaller rewards ranged between €11 and €80, and the 
larger rewards between €25 and €85. The delays ranged between 
7 and 186  days. Combinations of  reward amounts and delays 
were such that indifference between the options would yield one 
of  9 distinct discount rate kKirby, that is, there were 9 sets of  3 tri-
als yielding the same k-value, one with a relatively small, medium, 
and large delayed reward. Trials were presented in a specific order. 
One option was presented on the left of  the screen, while the 
alternative option was presented on the right side of  the screen. 
Participants had to press “x” or “m” to choose the left or the right 
option, respectively. Participants had unlimited time to make their 
decisions. At the start of  the task participants were asked to make 
the choices in accordance with their personal preference, and that 
there were no right or wrong answers. Participants were informed 
beforehand that this task would not be reimbursed.

Post-test questionnaire
This questionnaire consisted of  questions about demographics 
(age, income, marital status, nationality, profession, field of  study), 
questions regarding current physical state (known diseases, psychi-
atric treatment, smoking behavior, alcohol use) as well as questions 
regarding the decision tasks: we asked whether participants had 
problems focusing on the task (yes/no), how easy it was to under-
stand the tasks (5-point Likert scale), which strategy they used when 
making their choices (open question), whether they calculated the 
total duration of  choice options (yes/no), to what extent they tried 
to obtain the highest possible reward (5-point Likert scale), whether 
they always chose the same color, independent of  the outcome 
(always, often, sometimes, or never), whether their choices reflected 
their personal preferences (yes/no), and whether we could trust 
their answers (yes/no).

Additional measures
We additionally measured self-reported impulsivity using the Quick 
Delay Questionnaire (QDQ) and the Barratt Impulsiveness Scale 
(BIS) as well as time perception using a time production task. For 
procedure and results, see Supplementary Materials.

Procedure

Upon arrival, participants were asked to read and sign an informed 
consent form and the procedure of  the session. The number of  
participants tested at the same time ranged from 1 to 4. Each par-
ticipant was seated in his/her own cubicle that ensured privacy 

Table 1
Task parameters per block

Block RSS RLL DSS DLL ITIa rrSS
b rrLL ∆LTRc Block duration

1 5 Cent 10 Cent 3 s 5 s 5 s 0.63 1.00 37.50 119 s
2 5 Cent 10 Cent 3 s 10 s 5 s 0.63 0.67 4.17 154 s
3 5 Cent 10 Cent 3 s 15 s 5 s 0.63 0.50 −12.50 189 s
4 5 Cent 10 Cent 9 s 11 s 5 s 0.36 0.63 26.79 161 s
5 5 Cent 10 Cent 9 s 21 s 5 s 0.36 0.38 2.75 231 s
6 5 Cent 10 Cent 9 s 31 s 5 s 0.36 0.28 −7.94 301 s

Blocks and parameters were identical in the self-control and patch designs.
aITI = Intertrial interval.
brr = Reward rate.
cLong-term rate (LTR) difference between the SS and LL option. A positive value indicates a higher LTR for the LL option.

196

Downloaded from https://academic.oup.com/beheco/article-abstract/29/1/193/4633897
by Universitaets- und Landesbibliothek,  manuela.sellitto@uni-duesseldorf.de
on 17 January 2018



Seinstra et al. • Rate maximization and hyperbolic discounting

throughout the session. Identical laptops were used to ensure similar 
processing speed. No other participants or the experimenter could 
see the laptop screens during task performance. Before staring the 
tasks, participants received written instructions. The instructions 
stressed, among others, that, although the 4 tasks (i.e., conditions) 
may look similar, they were independent of  each other. In addition, 
participants were told that each task had a fixed duration, independ-
ent of  the choices that were made, and that their earnings depended 
on their choices. After written and verbal instructions and an oppor-
tunity for questions and answers, participants performed the 4 task 
conditions in random order. After each task condition, participants 
saw the monetary amount they had earned in that particular con-
dition and were prompted to ask the experimenter to start the next 
task. The main task was followed by Kirby’s discounting task, before 
which the participant received short oral instructions that were 
also repeated on screen before the task started. This was followed 
by the time production task, and QDQ and BIS questionnaires 
(see Supplementary Materials for results at these tasks). Finally, the 
participants filled out the post-test questionnaire. Participants then 
received a show-up fee of  €3 plus their earnings from the main task 
in the form of  a personal cheque that they could cash at any bank. 
If  requested, participants were informed about the aim of  the study.

Analysis

Rate maximization scores
The choice alternatives in each trial differed in their long-term 
reward rate (here: the cumulative reward amount per block; note that 
larger, later rewards do not always yield higher reward rates; depend-
ing on the task parameters, choices of  smaller, sooner rewards may 
produce more optimal outcomes, see Table 1 for details). To estimate 
to what extent individuals maximize long-term reward rate we cal-
culated LTR scores, which reflect the proportion of  choices of  the 
alternative with the highest reward rate, averaged across all 6 blocks 
in each design condition, resulting in 2 rate scores per individual.

We used a softmax rule to approximate the probability of  choos-
ing the alternative with the highest reward rate:

 p ej
C= +( )− ( )  1 1/ *µ

 (1)

in which p is the proportion of  choices for the alternative with the 
highest reward rate in block j, µ is a temperature parameter indicat-
ing the sensitivity to differences in reward rates, and C is the cur-
rency to be maximized, here, reflecting the difference in reward 
rates. Goodness of  fit was estimated using the Akaike Information 
Criterion (AIC).

Hyperbolic discounting
To estimate hyperbolic discounting, we used the same softmax deci-
sion rule in Equation 1 to estimate hyperbolic discount rates k from 
the proportion of  choices for the larger-later reward pLL.

For hyperbolic discounting, the currency C in Equation 1 was 
given by vLL - vSS, where vLL and vSS were the subjective, discounted 
values of  the larger-later reward in block j, or smaller-sooner 
reward, respectively, obtained from Mazur’s hyperbolic model 
(Mazur 1984):

 v
R

k Di
i

i

=
+1 ( )  (2)

where vi indicates the subjective, time-discounted reward value of  
reward i with reward magnitude R, and delay D. k is an individual 
discount factor determining the steepness of  the discount function.

We used all 6 blocks of  each design (self-control and patch) to 
estimate the individual discount parameter k. We computed a sin-
gle k-value per participant, pooling across trials from both design 
conditions. Additionally, separate k-values were estimated for each 
design condition, resulting in 2 different model fits for each individ-
ual. Reward magnitude R and delay D in Equation 2 was adjusted 
for each design (see Figure 1). Again, goodness of  fit was estimated 
using the AIC.

Model comparisons and data analysis
All parameter estimations were performed using least squares 
methods in MATLAB R2011a (Mathworks, Inc). When estimates 
in raw form as well as their log transformations violated the nor-
mality assumption, nonparametric tests were performed.

Predictions
Table  2 shows the predicted choice preferences per block for the 
rate maximization and hyperbolic discounting model. The predic-
tions of  the hyperbolic model depend on the individual discount 
parameter k estimates.

RESULTS
Task and trial completion

Twelve participants were excluded because they indicated, in 
the postexperiment debriefing questionnaires, having based their 
choice on the option with their favorite color (N = 4), to be unmo-
tivated or unwilling to maximize their payoff (N = 2), to deliber-
ately choose against their preference (N = 5), or they indicated that 
their given answers were not to be trusted (N = 1). Together this 
resulted in a final sample of  81 participants (mean age  =  23.2, 
SD = 5.0).

The number of  trials per block was variable. On average, par-
ticipants completed 11 trials in the first, 13 trials in the second, and 
17 trials in the third block in each task design (note that the more 
often the smaller-sooner reward was chosen, the more trials could 
be completed within the fixed time). There were no notable differ-
ences in number of  trials completed between the 4 conditions. All 
participants completed at least 7 trials in each block, except for one 
participant who completed only one trial in the second block of  
the patch condition (this block was excluded from further analysis). 
Therefore, for each participant, the first 7 trials per block were used 
in all subsequent analyses.

Manipulation check: sensitivity to parameter 
manipulations

As a manipulation check, we tested whether participants were sen-
sitive to the delay differences across blocks. To this end, we com-
pared the proportion of  large reward choices (pLL) between blocks with 
similar smaller-sooner reward delay within each design condition 
(Figure  2). There was a significant difference in pLL across blocks 
within each smaller-sooner delay (3 s and 9 s) and design (self-con-
trol and patch) condition: Friedman’s chi-square test for multiple 
repeated measures, all χ2 > 11.00, all P < 0.003.

Also within each smaller-sooner delay and task design, partici-
pants were sensitive to the changes in delay to the large reward: 
Wilcoxon pair-wise comparisons showed significant differences in 
pLL between consecutive blocks with similar smaller-sooner delays, 
all Z < −3.5, all P < 0.001, with the exception of  patch-condition 
(3 s), block 2 versus 3: Z = −1.09, P = 0.274.
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These results suggest that participants were sensitive to reward 
delays and magnitudes.

Choice behavior

Choice proportions
Choice proportions were mostly similar between design conditions: 
block-wise comparisons (Wilcoxon) of  pLL choices between self-con-
trol and patch conditions revealed no significant effect of  design, 
all Z > −1.13, all P > 0.257, except in blocks 1 and 2, block 1: 
Z  =  −2.60, P  =  0.009, r  =  0.20; block 2: Z  =  −2.71, P  =  0.007, 
r = 0.21. In blocks 1 and 2, the proportion of  large reward choices 
was significantly higher in the self-control than patch design.

Rate maximization
The LTR scores indicate to what extent participants’ choices pro-
duced long-term reward maximization. The median scores were 

0.64 (LTRself-control) and 0.60 (LTRpatch) (see Table 3). A comparison 
of  LTR scores showed significantly higher scores in the self-con-
trol than patch condition, Z = −2.08, P = 0.038, r = 0.16, indicat-
ing that participants selected the choice alternative with the higher 
LTR score more often in the self-control than the patch condition. 
Moreover, since it is possible that participants were still learning the 
reward contingencies in the first 7 trials, we repeated this analy-
sis on LTR scores for both designs on the last 5 choices of  each 
participant. We replicated the above mentioned results on LTR 
scores, Z = −2.87, P = 0.004, r = 0.23 (LTRself-control: Mdn = 0.67, 
range = 0.33–1; LTRpatch: Mdn = 0.67, range = 0.27–1). In line with 
this difference in LTR scores between self-control and patch condi-
tions, LTR scores were not significantly correlated between condi-
tions, rs = 0.16, P = 0.156 (see Table 4), indicating that participants 
did not maximize long-term reward rate to the same extent across 
design conditions.

These results suggest that, unlike in previous animal (e.g., 
Stephens and Anderson 2001) and human experiments (e.g., Carter 
et al. 2015), optimal decision making was not restricted to a sequen-
tial patch design.

Hyperbolic discounting
The log-k values did not differ between the 2 design conditions, 
Z = −0.25, P = 0.80, r  =  0.23 (see Table  3), and they correlated 
with each other, rs = 0.34, P = 0.002 (see Table 4). Moreover, LTR 
scores for the self-control condition and for the patch condition 
were positively correlated with k-values in the self-control condition, 
rs = 0.25, P = 0.026, as well as in the patch condition, rs = 0.30, 
P = 0.008, respectively. This indicates that higher discount param-
eters k went along with higher LTR maximization in both designs, 
implying that more impulsivity (the higher the k, the steeper the 
discounting) correlated with better long-term rate maximization.

Additionally, we computed k-values for both designs by con-
sidering all participants’ choices (and not the first 7 only). Here, 
log-k values significantly differed between the 2 design conditions,  
Z = −4.87, P < 0.001, r  =  0.38 (log-kself-control: Mdn = 0.01, 
range = 0.00–1; log-kpatch: Mdn = 0.99, range = 0.00–1), with higher 
discount rate in the patch setting than in the self-control one (see 
also Carter and Redish 2016).

We additionally run Spearman correlations between k-values 
of  the main task with k-values of  Kirby’s offline discounting task 
(see Table 3). The estimated k-values from Kirby’s discounting task  
(Mdn = 0.01, range  =  0.0002–0.16) were not correlated with the 
k-values of  either of  the 2 designs, although it positively correlated 
at the trend level with the k-values in the self-control condition, 
rs = 0.21, P = 0.060 (see Table 4). These results make sense con-
sidering the binary design of  Kirby’s task, the much larger reward 
magnitudes and delays, and the fact that Kirby’s task does not facil-
itate long-term considerations due to the task structure.

Earnings
The earnings within each design condition provide an indication of  
economic success. A Wilcoxon Signed Ranks test showed that earn-
ings in the self-control condition (Mdn = 6.70, range = 5.50–7.20) 
were significantly higher compared to the earnings in the patch 
condition (Mdn = 6.13, range = 5.15–6.65), Z = −7.65, P < 0.001, 
r = 0.60.

Moreover, earnings were significantly correlated with LTR 
measures in both designs, but not with the hyperbolic discount 
parameter k of  both designs (see Table 4). These results were cor-
roborated by running a hierarchical regression on the total earnings 

Table 2
Predicted preference for the SS or LL reward per block per 
decision model

Block
Maximizing LTR:  
both designs

Discounting:  
self-control design

Discounting:  
patch design

1 LL LL LL
2 LL k < 0.25: LL LL

k > 0.25: SS
3 SS k < 0.12: LL SS

k > 0.12: SS
4 LL LL LL
5 LL k < 0.35: LL LL

k > 0.35: SS
6 SS k < 0.09: LL SS

k > 0.09: SS

Predictions for LTR maximization were based on the calculation of  
reward rates using the total delay (prereward delay + ITI) and reward of  
each option. Predictions with regard to delay discounting were based on 
the discounted value of  the options, which were calculated using Mazur’s 
hyperbolic function (Mazur 1984). Only prereward delays were included 
when calculating the discounted value for k-values ranging from 0.0 to 1.0.
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Figure 2
Boxplots of  the proportion of  choices for the large reward (pLL) in each 
blocks per condition.
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of  participants with the log-k values for the self-control and the 
patch designs as predictors in the first model, and the LTR scores 
for the self-control and the patch designs as predictors in the second 
model. While the first model with the log-k values did not reach 
significance, R2  =  0.01, P  =  0.65, LTR scores were predictive of  
the total earnings (as well as of  earnings separate for the 2 design 
conditions, in separate analyses), R2 = 0.39, P < 0.001.

These results point at LTR maximization score as an indicator 
of  economic success.

Overall model comparison

To test whether the rate maximization model or the hyperbolic dis-
counting model provided a better fit to overall choice behavior, data 
of  both designs were pooled to compare AIC values of  the rate and 
hyperbolic discounting model. A  Wilcoxon Signed Ranks test indi-
cated that AIC values were significantly lower for the LTR model 
(Mdn  =  26.00, range = 23.21–26.54) compared to the hyperbolic 
discounting model (Mdn = 27.37, range = 20.58–28.54), Z  =  −4.79, 
P < 0.001, r = 0.38. Overall, the long-term rate maximizing model 
thus represents the data better than the hyperbolic discounting model.

Comparisons of model fits per condition

Table  3 shows the median and ranges of  parameter k, as well as 
the AIC values for hyperbolic discounting and reward rate max-
imization in the self-control and patch conditions. There was no 
difference in AIC values between designs regarding LTR scores, 
Z = −1.63, P = 0.10, as well no difference in AIC values between 
designs regarding log-k scores, Z = −0.21, P = 0.83, indicating that 
the rate maximization model and the hyperbolic model did equally 
well in both designs.

Furthermore, again, in both designs, the rate maximiza-
tion model provided a significantly better fit than the hyperbolic 
discounting model: in both design conditions, AIC values for 
long-term rate maximization were significantly lower than AIC 
values for the hyperbolic discounting model, self-control: Z = −3.43,  
P = 0.001, r = 0.27; patch-design: Z = −7.82, P < 0.001, r = 0.61.

To compare model performances even further, we evaluated our 
participants’ discounting behavior with respect to whether their 
discount rates led to long-term rate maximization or not. Table 2 
lists the predicted preferences of  an ideal LTR-maximizer (column 

2) and the preferences of  a hypothetical discounter, dependent on 
her hyperbolic discount rate (k-value), in the self-control (column 
3) and patch design (column 4).

To determine whether our participants’ discount values led to 
preferences that matched the prescriptions of  the LTR maximiza-
tion model, we computed the proportion of  subjects with a hyper-
bolic k-value—for the self-control task only (the choice predictions 
in the patch task always match the prescriptions of  the LTR model; 
cf. Stephens et  al. 2001; Stephens and Anderson, 2004)—falling 
into the respective “k-value ranges” specified for each block in 
Table 2. We consider only blocks 2, 3, 5, and 6 as the model predic-
tions differ in those blocks only (cf. Table 2). In block 2, an optimal 
discounter should have k-values lower than 0.25 in order to maxi-
mize LTR, which was the case in 77.8% (n = 63) of  participants. In 
block 3, a rate-maximizing discounter should have a k-value higher 
than 0.12, which was the case in 45.7% of  participants (n = 37). In 
block 5, 80.2% of  all participants (n = 65) had a k-value lower than 
0.35, thus maximizing LTR, and, in block 6, the k-value of  51.8% 
of  participants (n  =  42) was higher than 0.09, again, maximizing 
LTR. A  Pearson Chi-square test revealed that, across all blocks, 
the proportion of  participants maximizing LTR was significantly 
higher than the proportion of  participants not maximizing LTR 
(chi-square  =  25, P  <  0.001). The only block where the propor-
tion of  LTR-maximizing discounters was descriptively smaller than 
the proportion of  nonmaximizers was block 3. In this block, a very 
high level of  impulsivity would have been needed for LTR maxi-
mization, and roughly half  of  our participants were too patient to 
meet this strong impulsivity requirement. A similar trend could be 
observed in block 6 where only slightly more than half  of  the par-
ticipants had sufficiently high discount rates to maximize LTR. The 
observation that many participants were too patient to maximize 
LTR in blocks 3 and 6, where a high level of  impatience would 
have been optimal, is in line with the positive correlation between 
discount rates and LTR scores reported above: while all our partici-
pants were patient enough to match the LL preferences predicted 
by the LTR model in blocks 2 and 5, our more impulsive partic-
ipants, in contrast to the patient ones, had time preferences that 
matched the LTR prescriptions for SS choices in blocks 3 and 6. In 
conclusion, SS preferences in blocks 3 and 6 seem to contribute to 
some extent to the positive correlation between k-values and LTR 

Table 3
Summary of  parameters for each decision model

LTR scoresa ka AICa reward rate (LTR) AICa hyperbolic discounting

Self-control 0.64 (0.40–0.83) 0.10 (0.00–1.00) 21.78 (19.59–22.38) 22.62 (17.98–24.22)
Patch 0.60 (0.43–0.90)a 1.00 (0.00–1.00) 21.95 (16.14–22.38) 23.75 (18.03–24.38)

aMedian and range are shown due to violation of  normality.

Table 4
Spearman correlations of  hyperbolic discount rates with rate maximization scores and earnings

Main task Kirby Earnings

LTRself-control LTRpatch kself-control kKirby Self-control Patch

kself-control 0.25 (0.026)* 0.08 (0.48) - 0.21 (0.060) −0.08 (0.48) 0.15 (0.19)
kpatch −0.11 (0.33) 0.30 (0.008)** 0.34 (0.002)** 0.16 (0.16) −0.01 (0.90) −0.17 (0.88)
LTRself-control - 0.16 (0.16) 0.25 (0.026)* −0.01 (0.96) 0.36 (0.001)** 0.28 (0.012)*
LTRpatch 0.16 (0.16) - 0.08 (0.48) −0.22 (0.045)* 0.30 (0.008)** 0.64 (<0.001)**

*P < 0.05. **P < 0.01.
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scores. Hence, these data support the idea that, from a LTR max-
imization perspective, a certain level of  impulsiveness is preferable 
over strong patience: subjects with higher k-values tended to maxi-
mize reward rate to a larger extent than flat discounters because it 
allowed them to flexibly shift between LL and SS preferences across 
blocks.

DISCUSSION
In the present study, we examined how well hyperbolic discount-
ing and reward rate maximization explain human choice behav-
ior in an experiential intertemporal decision making task. To this 
end, we compared a hyperbolic discounting model and a reward 
rate maximization model, using choice behavior in the “classical” 
binary-choice self-control design as well as in the putatively more 
ecologically valid patch design. The hyperbolic model explained 
choices in the self-control and the patch designs equally well. The 
same was true for the long-term rate (LTR) maximization model, 
which provided equally good fits to participants’ choices in both 
design. Overall, however, the LTR maximization model provided 
a better fit to the data than the hyperbolic discounting model in 
both the self-control and patch designs combined. Moreover, LTR 
maximization scores were higher in the self-control design than 
in the patch design, while no difference in participants’ degree of  
discounting between the 2 paradigms emerged. This finding, in 
contrast to previous animal and human literature showing bet-
ter performance in patch than self-control designs (e.g., Stephens 
and Anderson 2001; Stephens et al. 2004; Schweighofer et al. 2006; 
Bixter and Luhman 2013; Zarr et al. 2014; Carter et al. 2015), sug-
gests that reward rate maximization can be universally observed in 
all choice frames, and it is not necessarily confined to foraging set-
tings only. Additionally, reward rate maximization scores correlated 
with the degree of  hyperbolic discounting in both paradigms, indi-
cating that the higher the discount rate, the higher the long-term 
reward maximization. This result went along with final earnings 
that were higher in the self-control task than in the patch one. The 
finding that steeper discounting correlated with higher rate maxi-
mization scores as well as higher earnings is counterintuitive at first 
sight, as steep discounting is typically associated with short-sighted, 
myopic decision making, and, consequently, nonoptimal choice in 
the economics field (Frederick et al. 2002; Kalenscher and Pennartz 
2008; Sellitto et  al. 2011) (see below for elaboration). Why does 
hyperbolic discounting, the epitome of  time-inconsistent preference 
(Kalenscher and Pennartz 2008), go hand in hand with reward rate 
maximization and higher total earnings in our tasks? We maintain 
that individuals maximize long-term reward rate in patch and self-
control designs for the very reason that they implement a decision rule 
that happens to be consistent with hyperbolic discounting. We will 
elaborate on this in the following.

The key point is the insight that the so-called preference rever-
sals that have led to the adoption of  hyperbolic discounting models 
over exponential discounting models (Mazur 1984; Mazur 1987; 
Kalenscher and Pennartz 2008) are necessary to maximize reward 
rate. To explain this, we need to take a step back to normative eco-
nomic DUT, which states that idealized rational decision makers 
should discount delayed rewards in a constant, exponential fash-
ion, which implies stable choice preferences over time (Samuelson 
1937). Time-consistent preferences can be epitomized by the sta-
tionarity axiom: when a subject prefers reward A  at time t1 over 
reward B at time t2, she should also prefer reward A at t1+T over 
reward B at t2+T, that is, when a common time interval T, that 

is, a front-end delay, is added to (or subtracted from) both delays 
(Fishburn and Rubinstein 1982). However, as said before, after 
introducing a front-end delay T (by adding or subtracting it) in the 
choice-set, humans and nonhuman animals often reverse their pref-
erence (Green et al. 1994; Kirby and Herrnstein 1995).

Preference reversals suggest that individuals attach disproportion-
ally large weights to short-term outcomes (Thaler 1981; Benzion 
et al. 1989). This “present-bias” (also known as common difference 
effects or immediacy effects) is ubiquitous, yet it is an anomaly in 
choice because it causes violations of  the stationarity axiom and, thus, 
goes along with time-inconsistent preferences. By consequence, 
from a normative economic perspective, it ultimately results in the 
tendency to act against one’s own future interest.

The pervasiveness of  present-biased, time-inconsistent prefer-
ences, and preference reversals is perplexing for economists, psy-
chologists, and behavioral ecologists alike: What is the adaptive 
value of  a choice pattern that so obviously creates nonoptimal 
results? One possible answer to this puzzle is, as mentioned, that 
natural selection has favored a decision rule that maximizes reward 
rate, not economic utility. Hyperbolic discounting, and the resulting 
propensity for preference reversals, supports reward rate maximiza-
tion because, when introducing (adding or subtracting) a front-end 
delay T to the choice-set, the average reward rate of  the 2 alterna-
tive options often reverses. Remember the example presented in the 
introduction: an animal chooses between option A: 2 food-items in 
2 s (rate: 1 item/s) and option B: 4 items in 8 s (rate: 0.5 items/s). 
The rate maximization principle would prescribe choosing option 
A  because of  its higher energy rate. If  both outcomes were then 
shifted in time by 10 s, the alternatives would now yield A’: 2 food-
items in 10 + 2  s (rate: 0.17 items/s) and B’: 4 items in 10 + 8  s 
(rate: 0.22 items/s). Now, while DUT would impose time-consistent 
choice, that is, preference for A’ over B’, rate maximization would 
prescribe a preference reversal, thus choosing B’ over A’. As men-
tioned in the introduction, the same logic also applies to single 
or repeated choices with nonexistent (in one-shot choices), fixed 
or variable postreward delays, and to different reward types, for 
example, financial rewards. Hence, rate maximization could only 
be achieved by a decision rule allowing for time-inconsistent pref-
erence reversals. Therefore, while DUT in economics prescribes 
that a rational agent should meet the stationarity axiom, optimal for-
aging theory would require the ability to flexibly shift preferences 
between smaller-sooner and larger-later rewards.

To understand why this example is not merely a special case, but 
illustrates a systematic, general requisite for flexible adjustment of  
preferences, one has to realize that reward rate does not drop at 
a constant rate with increasing front-end delays, but in a hyper-
bolic fashion (see Figure  3). By consequence, an optimal decision 
rule should systematically allow for flexible preference reversals in 
order to maximize reward rate in any choice situation with variably 
delayed outcomes. Or, in other words, to make optimal choices, a 
forager would have to do the very thing that economists stigma-
tize as irrational: show time-inconsistent preference reversals; were 
we the time-constant discounters prescribed by economic DUT, we 
would systematically fail to maximize reward rate when front-end 
delays were added to a binary choice set.

The logic illustrated in Figure  3 hinges on the natural occur-
rence of  front-end delays. It is therefore important to note that the 
assumption that foraging animals very often experience such front-
end delays in natural foraging scenarios, and that front-end delays 
matter for their foraging decisions, is realistic. Consider the quin-
tessential choice a foraging animal has to make—whether to stay in 
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its current food patch or leave the patch and move on to the next 
one—involves considering the travel time to the next patch. The 
travel time to the next patch is nothing else but a front-end delay, 
shifting the next foraging opportunities, in case of  a leave decision, 
into the future by the travel time. Hence, the necessity for prefer-
ence reversals, by consequence of  the hyperbolic nature of  reward 
rate decays (Figure 3), applies in a systematic way to animals mak-
ing such stay-or-leave decisions.

In sum, we argue that evolution has favored hyperbolic over 
time-consistent (or other forms of) discounting because reward-
rate in ecologically valid foraging scenarios decays hyperbolically 
(cf. Figure 3). An optimal choice algorithm maximizing long-term 
reward rate should track reward rate, and thus discount hyperboli-
cally; in other words, hyperbolic discounting is adaptive. Our results 
inform students of  human economic decision making about the 
putative ultimate reasons underlying hyperbolic, time-inconsistent 
discounting. But because of  its intellectual roots in optimal foraging 
theory, our ideas also shed light on the adaptive value of  hyper-
bolic discounting in foraging animals. We therefore believe that our 
findings are also of  relevance for scholars of  behavioral ecology of  
nonhuman animals, too.

Clearly, our reasoning of  the optimality of  preference reversals 
is not the only explanation of  intertemporal choice. Alternative 
accounts have put the spotlight on animals’ disregard of  postreward 
delays, that is, delays between reward delivery and the onset of  
the next decision, such as intertrial intervals (Pearson et  al. 2010). 
Postreward delays matter for energy-rate maximization in self-con-
trol tasks, as a change in postreward delay may result in a differ-
ent option having the highest long-term energy rate (Stephens and 
Anderson 2001). Monkeys, for instance, have been found to disre-
gard unsignalled postreward delays during intertemporal decisions, 
resulting in their failure to maximize reward rate unless the salience 
of  those delays was particularly highlighted (Blanchard et al. 2013). 
Studies focusing on the (lack of) processing of  postreward delays 
have made very valuable contributions to our understanding of  
temporal aspects during foraging. However, it is important to note 
that postreward delay accounts and our account of  the optimality 

of  preference reversals are not mutually exclusive, but our account 
offers an addition to the existing literature. Moreover, we would 
like to stress once again that our reasoning and logic would equally 
apply to tasks incorporating variable postreward delays.

It is important to note that our results are in seemingly par-
tial disagreement with previous findings. Notably, in contrast to 
earlier results (e.g., Schweighofer et al. 2006; Bixter and Luhman 
2013; Zarr et al. 2014; Carter et al. 2015) we could not replicate 
a patch effect as participants maximized LTR more often in 
the self-control than the patch design, also reflected by higher 
earnings in the self-control condition compared to the patch 
condition. Carter and colleagues (2015) suggested that different 
cognitive mechanisms may underlie choices in the patch and 
self-control conditions, which could have led to the patch-effect. 
However, our results suggest otherwise: in both design condi-
tions, the LTR maximization model provides the best fit with 
the data. Furthermore, the estimated hyperbolic discount rates 
(represented by the parameter k) in both design conditions were 
positively correlated, and they were correlated with LTR scores 
in both paradigms. This hints at similar, possibly identical cog-
nitive mechanisms in all intertemporal choice contexts under 
consideration.

Why did we find evidence in favor of  a single cognitive mech-
anism underlying choices in the patch and the self-control designs, 
while Carter and colleagues (2015) suggested different mechanisms? 
The main difference between the studies is the type of  dependent 
variable: while Carter et  al. computed model-predicted choices 
across a range of  LTR values, we not only quantified the extent 
by which individuals maximized long-term reward rate by com-
puting LTR scores, but we also measured participants’ hyperbolic 
discount rates for both (patch and self-control) paradigms, as well 
as we directly compared the maximization and the hyperbolic mod-
els within and between paradigms. This allowed us to go beyond 
Carter and colleagues’ (2015) analysis, and perform a conceptu-
ally different examination by directly comparing the performance 
of  LTR and discounting models in the patch and self-control 
paradigms.
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Rate maximization requires preference reversals. (A) Development of  reward rates (rr) of  a smaller, sooner and a larger, later reward with increasing front-
end delay, for rrSS > rrLL at τ = 0. Reward rate decreases hyperbolically across front-end delays. Given the hyperbolic nature of  the asymptotes, rrSS and rrLL 
cross over, implying optimal choice of  smaller, sooner rewards left of  the cross-over point, and larger, later rewards right of  the cross-over point. (B) Heat 
plot indicating the difference in reward rate (rrSS - rrLL) at a range of  delay differences and front-end delays, when the large to small reward ratio is 0.5. The 
heat plot indicates that the rate difference (in color) is determined by a linear relationship between front-end delay τ and delay difference ∆d. For any delay 
difference ∆d there is a front-end delay τ at which the rate difference rrSS - rrLL is 0.
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Importantly, another difference is that, in contrast to Carter and 
colleagues (2015), we used a full within-subject design: while, in 
our experiment, all participants experienced all task manipulations, 
Carter and colleagues (2015) randomly assigned participants to the 
different ITI-, short-, and long-delay conditions. Moreover, ITIs and 
delay-to-reward durations in Carter and colleagues (2015) were in 
the range of  5  s to 90 s, whereas in the present study experienced 
durations varied between 3 s and 31 s (see also Carter and Redish 
2016). Intertemporal choice patterns are known to be strongly mod-
ulated by the range of  delays and reward magnitudes used in a given 
task (Read 2001). Hence, the most parsimonious explanation for the 
discrepancy in results is that the inference of  the cognitive mechan-
ism underlying a revealed choice pattern depends on whether the 
data pool comprises observations from individuals who attend to the 
full set of  parameter manipulations, or only subsets of it.

Of  additional note, participants assigned to the patch condition 
in Carter and colleagues’ (2015) study were explicitly told how to 
end a trial and go to the starting point—whereas participant in 
the present study needed to learn by experience when and how 
a trial ended. Moreover, they had to actually move in one of  the 
experiments in order to proceed with the trial in one of  the con-
ditions—whereas in the present study participants only performed 
the task on a computer. These differences in the experimental set-
tings make the 2 studies not fully comparable and might have likely 
affected participants’ performance in the tasks. Future studies need 
to directly compare results from designs adopting different delay 
ranges and instruction procedures.

Finally, it is important to acknowledge some limitations of  our 
theory. Clearly, rate maximization is a powerful idea, but it is not the 
only principle guiding decision making in human and nonhuman 
animals. For instance, rate maximization fails to predict behaviors 
when animals trade-off foraging opportunities with predation risk, 
it often cannot explain matching behavior or spontaneous altera-
tion between choice options, and it makes unrealistic assumptions 
regarding near-omniscience (animals are informed about all perti-
nent information), and (lack of) memory constraints (see Herrnstein 
1970; Stephens and Krebs 1986; Pierce and Ollason 1987; Sih 
and Christensen 2001; Kalenscher et al. 2003; Stephens et al. 2007; 
Stevens 2010). Hence, the ideas presented in this article are only a 
starting point for avenues for future research to uncover the reasons 
for hyperbolic, time-inconsistent decision making.

In summary, we found evidence that human choice behavior in 
a “classic” self-control task follows long-term reward rate maximi-
zation rules as well and even better than in a patch design task. 
Moreover, long-term reward rate maximization correlates with the 
degree of  hyperbolic discounting in both paradigms. We argue 
that natural selection may have favored the evolution of  a deci-
sion rule supporting maximization of  long-term energy rate, but 
not economic utility, that allows preference reversals over timed 
outcomes because time-constant discounting would result in a sys-
tematic violation of  rate-optimization principles. Crucially, while 
the time-inconsistent preference pattern produced by the underly-
ing decision rule seemingly resembles hyperbolic discounting, our 
data support the idea that the currency maximized in intertemporal 
choice is long-term reward rate through hyperbolic reward discount-
ing. It is perhaps noteworthy that, in contrast to previous literature, 
we did not find an improvement in long-term rate maximization by 
implementing a “patch” design, which could be due to procedural 
and analytical differences between our and previous studies, mainly 
regarding differences in the dependent measures as well as train-
ing and experience of  participants. Further studies should focus 

on how reward rate maximization may be expressed in different 
intertemporal choice task designs as well as in different species. For 
example, a study design that allows for discounters with specific dis-
count rates to reveal a patch-effect could explain why our results 
differ from the results of  Carter et al. (2015).
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