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Generosity toward others declines across the perceived social distance to them. Here, participants chose between 

selfish and costly generous options in two conditions: in the gain frame, a generous choice yielded a gain to the 

other; in the loss frame, it entailed preventing the loss of a previous endowment to the other. Social discounting 

was reduced in the loss compared to the gain frame, implying increased generosity toward strangers. Using 

neuroimaging tools, we found that while activity in the temporoparietal junction (TPJ) and the ventromedial 

prefrontal cortex (VMPFC) was associated with generosity in the gain frame, the insular cortex was selectively 

recruited during generous choices in the loss frame. We provide support for a network-model according to which 

TPJ and insula differentially subserve generosity by modulating value signals in the VMPFC in a frame-dependent 

fashion. These results extend our understanding of the insula role in nudging prosocial behavior in humans. 
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. Introduction 

Most human societies are collaborative. Collaboration offers bene-

ts to their members that they would not be able to achieve individu-

lly. However, societies can only function efficiently if their members

re willing to contribute to causes whose beneficiaries are abstract and

nonymous, such as public goods, and/or to causes whose beneficia-

ies are socially remote, as it is often the case with wealth redistribu-

ion for social welfare, public health insurance, or state pension systems

see also Kalenscher, 2014 ). Most people are indeed willing to sacri-

ce own resources for the welfare of others ( Nowak, 2006 ; Rilling and

anfey, 2011 ), but their generosity typically declines steeply with social

istance between them and the recipients of help, a phenomenon called

ocial discounting ( Jones and Rachlin, 2006 ; Strombach et al., 2015 ).

ence, while people are ready to provide costly support to friends, rela-

ives, and acquaintances, they are less inclined to help remote strangers.

The social discount function is idiosyncratic ( Kalenscher 2017 ;

ekaria et al., 2017 ; Archambault et al., 2019 ), but it is far from sta-

le within and across individuals. For instance, we and others have

hown that participants from individualistic or collectivistic cultures

 Strombach et al., 2014 ) differ in their attitude towards the welfare of

ocially close peers; that psychosocial stress ( Margittai et al., 2015 ) and

eurohormonal stress action ( Margittai et al., 2018 ) can increase gen-

rosity towards socially close friends and acquaintances; and that the

evel of prosociality towards socially close others depends on gender
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nd cognitive load ( Soutschek et al., 2017 ; Strombach et al., 2016 ). We

urther showed that disrupting the temporoparietal junction (TPJ) – a

rain region we recently identified as a central hub orchestrating the

alance between egocentric and other-regarding preferences in social

iscounting ( Strombach et al., 2015 ), and which is also associated with

erspective taking ( Tusche et al., 2016 ) and theory of mind ( Saxe and

anwisher, 2003 ) – by means of transcranial magnetic stimulation in-

reases the steepness of social discounting ( Soutschek et al., 2016 ), thus

owering the willingness to support socially remote strangers. 

This body of evidence suggests that the degree by which individuals

alue socially close and distant others’ well-being is highly malleable.

owever, despite its paramount theoretical and societal significance,

eans to increase the inclination for costly support of socially remote

eneficiaries are elusive. 

Here, we provide behavioral and neural evidence for a simple ma-

ipulation that aims at significantly increasing individuals’ willing-

ess to costly support socially remote others. We make use of the ob-

ervation that people are more sensitive to others’ losses than gains

 Bardsley, 2008 ; Dreu, 1997 ; Evans and Beest, 2017 ; Everett et al., 2015 ;

i et al., 2017 ; Liu et al., 2020 ; Schweda et al., 2020 ; Sip et al., 2015 ;

mith et al., 2015 ; Wang et al., 2017 ; Xiao et al., 2016 ; Zheng et al.,

010 ), and are consequently strongly reluctant to increase their own

ayoff at the expense of others’ welfare ( Baumeister et al., 1994 ;

hang et al., 2011 ; Chang and Sanfey, 2013 ; Crockett et al., 2014 ;

ist, 2007 ). We hypothesized that participants would be more altruistic
ay 2021 
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owards others, including socially remote strangers, if a costly generous

hoice was framed as preventing a monetary loss to others rather than

ranting them a gain, even if actual economic outcomes were equiv-

lent. In other words, we expected that the way a prosocial decision

roblem was framed mattered for the shape of the social discount func-

ion. 

To test this hypothesis, we elicited social preferences in a standard

ersion of the social discounting task (gain frame; Strombach et al.,

015 ) as well as in a loss frame variant. In each trial, participants de-

ided to share money with other individuals on variable social distance

evels. They chose between a selfish option, yielding high own-payoff

nd zero other-payoff, and a generous option, yielding a lower own-

ayoff and a non-zero other-payoff. The main difference between con-

itions was the way the decision problem was described: in the gain

rame, a costly generous choice would yield an equivalent gain to the

ther player, while, in the loss frame, it would imply preventing the loss

f a previous endowment to the other player. Importantly, the payoff

tructure was mathematically identical across frame conditions, i.e., the

hoice alternatives in the loss frame yielded identical own- and other-

ayoffs to those in the gain frame. Participants were explicitly instructed

hat the other persons would only be informed about the final outcome,

ut not about their endowment, or the loss of it; hence, they knew about

he economic equivalence across frames. 

We show in a series of independent studies that participants were

ore reluctant to make a selfish choice if this implied a loss of the en-

owment to the other, resulting in a substantially flatter social discount

unction in the loss than the gain frame and, hence, higher generosity

owards socially remote others. 

To obtain further insights into the psychological and neural mech-

nisms underlying this framing effect on social discounting, we mea-

ured blood oxygen level-dependent (BOLD) responses while partici-

ants performed both frame conditions of the social discounting task.

e hypothesized that the psychological motives underlying generos-

ty were frame-dependent and dissociable on the neural level. Consis-

ent with our previous work ( Strombach et al., 2015 ), we predicted

hat generosity in the gain frame was vicariously rewarding and the

esult of the resolution of the conflict between selfish and altruistic

otives. Specifically, generosity in ( Strombach et al., 2015 ) was asso-

iated with activity in TPJ, which suggested facilitation in overcom-

ng the egoism bias via the modulation of value signals in the ventro-

edial prefrontal cortex (VMPFC), a brain structure known to repre-

ent own and vicarious reward value ( Bartra et al., 2013 ; Mobbs et al.,

009 ), through the integration of other-regarding utility. In line with

 Soutschek et al., 2016 ; Strombach et al., 2015 ), we therefore expected

hat generous choices in the gain frame would elicit activation of the

MPFC along with TPJ. Conversely, in the loss frame, we expected

hat the disinclination to maximize own-gain at the expense of other-

oss was motivated by the desire to comply to social norms, such as

he respect of others’ property rights, or the do-no-harm principle. We

herefore hypothesized increased activity in brain regions that are im-

licated in the social sentiments that motivate individuals to comply

o social norms, such as the negative emotions experienced during so-

ial norm transgressions, e.g., guilt and shame, as well as the aver-

ive experience of unfairness and inequality ( Montague et al., 2007 ;

iang et al., 2013 ). Such social sentiments have been consistently as-

ociated with the insular cortex ( Chang et al., 2011 ; Chang and San-

ey, 2013 ; Civai et al., 2012 ; Corradi-Dell’Acqua et al., 2013 ; Gu et al.,

015 ; Lallement et al., 2013 ; Oldham et al., 2018 ; Samanez-Larkin et al.,

008 ; Spitzer et al., 2007 ; Tomasino et al., 2013 ; Von Siebenthal et al.,

017 ; Wang et al., 2017 ; Yu et al., 2014 ). Results support our main

ypothesis that frame-dependent choice motives were associated with

istinct neural signatures. During generous choice in the gain frame we

ound the involvement of VMPFC and TPJ ( Hutcherson et al., 2015 ;

trombach et al., 2015 ), while we identified the insular cortex as the

ore component of a network associated with generous choice in the loss

rame. 
w  

2 
. Material and methods 

.1. Participants 

.1.1. Studies 1–3 

Three separate behavioral studies were carried out to test the valid-

ty of our paradigm in different settings and with different compensation

rocedures. For these studies we did not calculate the sample size in ad-

ance as we were not aware of any previous similar manipulation of

ocial discounting. Study 1 was run online ( n = 61; seven participants

ater excluded from the analyses due to bad fitting; 28 females; mean

ge = 36 years, ± 11 standard deviation) and participants were paid a

xed allowance of €8.5. Study 2 was run online ( n = 36; 32 females;

ean age = 21 years, ± 2.6) and participants, all psychology students

n campus, were reimbursed for their time with a fixed amount of uni-

ersity credits. Study 3 ( n = 39; eight participants later excluded from

he analyses; 20 females; mean age = 26 years, ± 6.0) was run in the

aboratory and participants were paid out with the same fully incentive-

ompatible procedure as in the fMRI study 4 (see below). All three stud-

es were conducted according to the Declaration of Helsinki and they

ere approved by the local ethics review board of the Heinrich-Heine

niversity Düsseldorf. For studies 1 and 2 we did not collect informed

onsent, as this was allowed by the local ethics committee for online

tudies, which were fully anonymized, whereas we collected written in-

ormed consent in study 3, in the laboratory. 

.1.2. Study 4 

After having replicated our results across the three behavioral stud-

es with a within-subject design (see Results), for the fMRI study we

stimated, via G 

∗ Power, assuming a medium-to-large effect size, that

he sample size necessary to achieve a power of 0.95 was n = 23. Con-

idering frequent participants’ drop out during long scanning sessions as

urs , or due to excessive movement, we opted for n = 40. Forty healthy

oung volunteers were therefore recruited at the Life&Brain Research

enter in Bonn for an fMRI study. All participants met MR-compatible

nclusion criteria in addition to no self-reported current or history of

eurological or psychiatric disorder, as well as no current use of medi-

ation affecting the central nervous system. Due to excessive head mo-

ion during measurements ( > 4 mm, > 4° rotation, as computed through

rtrepair Toolbox; Stanford Psychiatric Neuroimaging Laboratory, see

 Cho et al., 2013 ; Strombach et al., 2015 ; Wendelken et al., 2011 ), 10

articipants were excluded from all analyses. Thus, the final sample in-

luded 30 subjects (21 females; mean age = 25 years, ± 4.6, range: 19–

5 years) with high-education level (mean education = 14 years, ± 1.9,

ange: 12–18 years, from high school to university master degree). Fif-

een participants had a net monthly income between €0 and €499, eight

etween €500 and €999, five between €1000 and €1499, one between

1599 and €1999, and one larger than €2500. 

All participants were fluent German speakers, right-handed, and had

ormal or corrected-to-normal vision. As reimbursement, they were paid

20 as participation fee, plus earnings from the social discounting task.

herefore, participants’ payoff ranged from €27.5 up to €35.5 (see Social

iscounting task). 

The study was conducted according to the Declaration of Helsinki

nd it was approved by the local ethics review board of the Univer-

itätsklinikum Bonn. All volunteers gave written informed consent to

articipate in the study. 

.2. Social discounting task 

In this task (adapted from Strombach et al., 2015 ), participants were

rst asked to imagine people from their social environment represented

n a scale ranging from 1 (the person socially closest to them) to 100 (a

andom stranger), where a person at rank 50 was described as a person

hat the subject had seen several times without knowing the name. They

ere instructed to select six real persons located at social distances of 1,
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Fig. 1. Social discounting task (fMRI study 

4). a. Trial example of the gain frame . b. Trial 

example of the loss frame . Each trial started 

with the presentation of a ruler-based repre- 

sentation of social distance to the other-person, 

with a left-most purple icon representing the 

participant and a yellow icon indicating the so- 

cial distance of the other-person in the current 

trial (100 in this example). Additionally, par- 

ticipants received information as to the endow- 

ment of the other person, i.e., “This person has 

€0 ″ for the gain frame ( a ), or “This person has 

€75 ″ for the loss frame ( b ) (4–6 s). Afterwards, 

the two choice options appeared. The selfish al- 

ternative was displayed in purple fonts, indicat- 

ing the own-reward magnitude to the partici- 

pant (here: €115). Selfish choices implied a null 

gain for the partner in the gain frame ( a ) or the 

loss of the initial €75-endowment (in yellow) 

for the other person in the loss frame ( b ). The 

generous alternative was displayed in yellow 

fonts, and always yielded an equal €75 own- 

reward and €75 other-reward split in the gain 

frame ( a ), or a €75 own-reward gain and the 

possibility to keep the €75 other-endowment in 

the loss frame ( b ). As soon as the two choice op- 

tions appeared, participants had 5 s to choose 

one of the two alternatives. After a choice was 

made, or after the 5 s had passed, a blank screen 

with a fixation cross appeared (1–7 s), and then 

a new trial started. 
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a  
, 10, 20, 50, and 100 (with no need of specifying the name and their

ocial relationship for the social distances 50 and 100). Participants were

ncouraged to avoid thinking of people that they felt negatively toward

nd people they shared a bank account or household with. Each trial

egan with the display of the social distance level of the partner the

articipant was playing with. Social distance was represented with a

uler scale consisting of 101 icons. The left-most icon, highlighted in

urple, depicted the participant. One of the remaining 100 other icons

as highlighted in yellow, indicating the social distance of the partner.

urthermore, social distance information was additionally indicated as

 number on top of the highlighted yellow icon to prevent perceptual

naccuracies in estimating social distance (cf. Fig. 1 for an example on

 partner on social distance 100). 

We included two experimental conditions, a gain frame and a loss

rame . The gain frame manipulation was near-identical to the task used

n ( Strombach et al., 2015 ). Briefly, after presenting the social distance

nformation as described above, participants were instructed that, in

his trial, the experimenter gave an initial endowment of €0 to the other

erson ( “This person has €0 ″ ; Fig. 1 a). Participants were explicitly and

epeatedly instructed that the other person was not aware of her zero

ndowment, she would only be informed of the final payoff after im-

lementing the participant’s choice. Then, two monetary options ap-

eared, a selfish and a generous option. The selfish option (on the left

n Fig. 1 a, in purple letters) indicated the reward magnitude for the par-

icipant, if chosen (e.g., €115 to the participant and no other-reward

o other). The generous option contained a smaller own-reward to the

articipant ( €75) and an other-reward to the other person ( €75) (on

he right in Fig. 1 a). Own-rewards were always indicated in purple and

ther-rewards were always indicated in yellow. Participants indicated

heir choice of the selfish or the generous alternative by a left or right

utton press. 

In the loss frame , participants were informed, after the social distance

resentation, that the other person has received an initial endowment

f €75 ( “This person has €75 ″ ; Fig. 1 b). As before, participants were ex-

licitly and repeatedly instructed that the other person was not aware

f her initial endowment, or the potential loss of it. On the next screen,
3 
 selfish (on the left in Fig. 1 b) and a generous alternative (on the right

n Fig. 1 b) appeared. When choosing the selfish alternative, the partici-

ant received the own-reward amount indicated in purple (here, €115),

nd the other person lost her initial endowment, as indicated in yellow

- €75), thus leaving her empty-handed. When choosing the generous al-

ernative, the participant received a smaller own-reward indicated in

urple ( €75), implying that the other person would keep her endow-

ent. 

In addition to the framing (gain frame, loss frame) and the social

istance levels of the other (1, 5, 10, 20, 50, 100), in each condition,

e manipulated the magnitude of the own-reward across trials: we used

ine selfish reward amounts per frame condition, ranging from €75 to

155 in steps of €10. The generous alternative’s payoff was invariant,

lways yielding €75 own-reward and €75 other-reward in all conditions

nd trials. 

Thus, in the gain frame condition, the other person always had a

0 endowment, the selfish alternative always yielded a variable own-

eward and no reward for the other, and the generous alternative in-

ariantly yielded an equal €75/ €75 split between participant and other

erson. In the loss frame condition, the other-endowment was always

75, the selfish alternative yielded a variable own-reward accompanied

y the loss of the €75 endowment to the other, and the generous alterna-

ive always yielded €75 own-reward and had no financial consequences

or the other, i.e., she could keep her initial endowment of €75. 

To summarize the logic of the task, both frames were mathematically

quivalent, i.e., they yielded identical final payoff states to the partici-

ant and the other person (in the example in Fig. 1: both frames yield

n own-reward gain of €115 to the participant and €0 gain to the other

erson after a selfish choice, or €75 own-reward and €75 other-reward

fter a generous choice). The only difference between conditions was

hat a €0 other-reward outcome was framed as a loss of the initial en-

owment in the loss frame vs. a null-gain in the gain frame, and a €75

ther-reward was framed as keep-endowment in the loss frame vs. a €75

ain in the gain frame . 

The order of frame conditions, selfish-reward presentations, as well

s the left or right screen- position of the selfish and generous alternative
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e  

f  

l  

t  

r  

r  

<  
ere randomized and counterbalanced across trials. The task of studies

–3 had a total of 108 self-paced trials (54 trials per each frame). The

ask of study 4 had a total of 216 trials as each trial type was repeated

wice to allow for full left/right position counterbalancing. For events

uration of study 4, please refer to Fig. 1 . 

.2.1. Incentivization procedure 

In studies 3 and 4 the social discounting task was fully incentive-

ompatible. At the end of the session, one of the participant’s choices

as randomly drawn and 10% of the own-reward amount was paid out,

s well as, in case of a generous choice, 10% of the other-reward amount

as paid out to the other person in that trial, either via cheque, for the

ther-persons indicated by the participants at social distance 1, 5, 10,

0, or in cash to a random person on site in the case of other-persons at

ocial distance 50 and 100. Note that the recipients of other-reward were

nly notified in case of a positive payoff, but not in case of a zero payoff

r in case a trial was randomly chosen that did not consider them; in ad-

ition, they were not informed beforehand about this experiment, and,

hus, had no prior outcome expectations. Hence, our incentivization pro-

edure made it logically impossible for the other persons to know about

heir endowment, or the loss of it. 

.3. General procedure 

.3.1. Studies 1–3 

All participants performed a social discounting task and, at the end,

hey completed a questionnaire assessing social desirability (see Supple-

entary material and methods). Although the social discounting task

f studies 1 and 2 was not incentivized, participants were strongly en-

ouraged to think as if they were making decisions for real. In studies

 and 2, participants were instructed about the social discounting task,

nd then, after answering comprehension questions, they assigned other

ersons (i.e., name and personal relationship with them) from their so-

ial environment to the social distances 1, 5, 10, and 20, completed the

ask (see Social discounting task), and finally filled out a questionnaire

see Supplementary material and methods) through Unipark online sur-

ey software (Unipark questback). Participants were provided with a

eb link to do so, after being recruited via flyers and advertisements

n social platforms. Monetary payment for study 1 was implemented

ia Clickworker (GmbH), whereas university credits reimbursement was

arried out on campus for study 2. In study 3, after recruitment, partici-

ants were invited to the laboratory, they were instructed on the social

iscounting task along with the comprehension questions. They then

ompleted the task, implemented in Matlab R2016a (MathWorks) and

ogent toolbox ( www.vislab.ucl.ac.uk ), and filled out a questionnaire

n a laptop. Finally, they were reimbursed for participation contingent

n their choices, identical to the incentivization procedure in study 4. 

.3.2. Study 4 

Upon arrival, participants received instructions about the social dis-

ounting task and then, after applying comprehension questions to

heck for full understanding of the task, they assigned other persons

i.e., name and personal relationship with them) from their social envi-

onment to the social distances 1, 5, 10, and 20 via paper and pencil.

fterwards, participants performed a few sample trials to familiarize

ith the task structure and they were subsequently cleared for the scan-

ing session. At the end of the scanning session, they answered control

uestions concerning the social discounting task, and filled out a demo-

raphic questionnaire as well as questionnaires assessing social desir-

bility and empathy (see Supplementary material and methods). Finally,

articipants were debriefed and received their monetary allowance. 

.4. Studies 1–4 

.4.1. Behavioral data analysis 

Hyperbolic model : Similar to previous studies ( Jones and Rach-

in, 2006 ; Margittai et al., 2015 , 2018 ; Soutschek et al., 2016 ;
4 
trombach et al., 2015 ), we approximated the participants’ decay in

enerosity across social distance with a hyperbolic function: 

 = 

𝑉 

( 1 + 𝑘 ∗ 𝑆𝐷 ) 
(1)

here v represents the discounted value of generosity, SD represents

ocial distance, k represents the degree of discounting, and V is the in-

ercept at social distance 0, thus the origin of the social discount func-

ion ( Jones and Rachlin, 2006 ; Margittai et al., 2015 ; Soutschek et al.,

016 ; Strombach et al., 2015 ). While V can be considered an indica-

or of generosity towards socially close others ( Margittai et al., 2015 ,

018 ; Strang et al., 2017 ), k describes the discount rate, i.e., the steep-

ess by which the social discount function decays across social distance.

e estimated k and V for each participant separately, depending on her

ndividual choice pattern. 

To estimate V, we titrated the selfish amount to determine, at each

ocial distance, the point at which the subject was indifferent between

he selfish and generous options (i.e., indifference point; see Supple-

entary results). Logistic regression, implemented in Matlab R2016a

MathWorks), was used to determine the indifference points where the

ikelihood of choosing the selfish and the generous options was 50%

 Soutschek et al., 2016 ; Strombach et al., 2015 ). Across the four stud-

es, V ranged between 10 and 99, 95% CI [76, 82] for the gain frame,

nd between 10 and 98, 95% CI [73, 79] for the loss frame. Across the

our studies, the median R 

2 of the estimated V parameters equall ed 0.99,

ange = 1 for the gain frame, and 0.93, range = 1 for the loss frame. 

To fit Eq. (1) and estimate k , we modeled trial-by-trial choices via a

oftmax function to compute the probability P of choosing the selected

ption o i over the other option o ii on a given trial: 

 𝑜 𝑖 = 

1 
1 + exp 

(
−1 ∗ 𝑚 ∗ 

(
𝑣𝑜 𝑖 − 𝑣𝑜 ii 

)) (2) 

iven the subjective values v (based on the current selfish amount and

ocial distance) of the current available options o 1 (vo 1 ) and o 2 (vo 2 )

s in Eq. (1) . The nuisance parameter m reflects the stochasticity of in-

ividual performance. The larger the m , the less noisy the choice pat-

ern. Individual discount rates were defined by the respective k value

hat yielded the best prediction of the observed choice probabilities

y applying maximum-likelihood estimation using nonlinear optimiza-

ion procedures (fminsearch function), implemented in Matlab R2016a

MathWorks). To this end, we minimized the log-likelihood of the choice

robabilities to obtain the best-fitting k and m parameter estimates, by

umming across trials, given a specific set of model parameters k and

 , the logarithm of P(o i ). Across the four studies, k ranged between

E-12 and 0.69, 95% CI [0.03, 0.06] for the gain frame, and between

E-13 and 0.48, 95% CI [0.01, 0.03] for the loss frame. Across the four

tudies, the median log-likelihood of estimated k parameters equalled

 21, range = 60 for the gain frame, and − 20, range = 58 for the loss

rame. 

We additionally performed parameter recovery simulation to check

hat the fitting procedure had generated meaningful parameter values.

ased on the procedures described in Wilson and Collins (2019 ), we used

btained individual discount parameters k and their respective noise pa-

ameter m to create synthetic participants, computed 10 simulations of

esponses of these synthetic participants, fitted the simulated data with

ur model (see Eqs. (1) and (2) ), and compared the mean values of

he obtained recovered parameters from the simulations against the in-

utted parameters of all four studies collapsed (see also Studer et al.,

019 ). Participants with null discounting (no variance in choice) were

xcluded from the sample as model parameters could not be estimated

or them. Four simulations (out of a total of 2440) were excluded as they

ed to a k value of the order of E + 13. The parameter recovery simula-

ions showed adequate recovery of the k parameters, with a Pearson cor-

elation between inputted and mean recovered k parameter estimates of

 = 0.95, p < 0.001, Cohen’s d = 6.08 for the gain frame and of r = 0.96, p

 0.001, Cohen’s d = 6.86 for the loss frame (see Fig. S1a,b). Moreover,

http://www.vislab.ucl.ac.uk
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e correlated the difference in k values between gain and loss frame

or each real participant with the difference in k values between gain

nd loss frame for their respective average simulation. This correlation

as r = 0.89, p < 0.001, Cohen’s d = 3.90, a result that is corroborated

y comparing simulated k parameters for the gain and the loss frame:

nce again, k values for the loss frame were significantly smaller than

 values for the gain frame (median k gain = 0.02, range k gain = 0.86 vs.

edian k loss = 0.008, range k loss = 0.52; Wilcoxon matched-pair test:

 = 7.10, p < 0.001, r = 0.70), matching our results. Additionally, the

ecovery of the noise parameter m led to a correlation of r = 0.66, p <

.001, Cohen’s d = 1.76 for the gain frame and of r = 0.41, p < 0.001,

ohen’s d = 0.90 for the loss frame. Note that the recovery was compro-

ised by low-noise participants (with high m values) because their noise

arameters were likely overestimated. Excluding those participants (9

ut of 140 for the gain frame and 7 out of 105 for the loss frame) im-

roved the recovery of the noise parameter m to r = 0.95, p < 0.001

or both the gain and the loss frame, without altering the recovery of

he discount parameter k ( r = 0.95, p < 0.001 for the gain frame and of

 = 0.96, p < 0.001 for the loss frame) (see Fig. S1c,d; please note that

he excluded participants are not reported in these two figures as they

ere masking the representation of the rest of the data). Across the four

tudies collapsed, the median log-likelihood of recovered k parameters

as − 20, range = 56 for the gain frame, and − 19, range = 57 for the

oss frame. Thus, in summary, our simulations showed reliable and ad-

quate recovery of the hyperbolic discount parameter k and the noise

arameter m . 

Both estimated variables V and k were analyzed using non-

arametric statistics as they were, in most of the cases across the

our studies, not normally distributed even after log-transformation

Kolmogorov-Smirnov, all ds > 0.20, all ps < 0.05). When participants

id not discount at all (i.e., they always chose the generous or the self-

sh option), k was set to 0 and V was set to 80 (i.e., maximum reward

mount foregone = maximum selfish amount 155 – generous amount

5) for all generous choices or to 0 for all selfish choices. All behav-

oral analyses were run in Statistica 12 (StatSoft). For additional analy-

es (i.e., indifference points, area under the curve, reaction times, and

uestionnaires) please see the Supplementary information. 

.5. Study 4 

.5.1. fMRI procedures 

Magnetic resonance images were collected on a 3T whole-body scan-

er (Magnetom Trio, Siemens Medical Systems, Erlangen, Germany)

ith an 8-channel head coil. For functional imaging, gradient-echo

cho-planar images (EPI) were acquired at TR = 2500 ms (TE = 30 ms;

umber of slices = 37; slice thickness = 3 mm; distance factor = 10%;

oV = 192 mm × 192 mm; matrix size = 64 × 64; flip angle = 90°).

lices (voxel size = 2 × 2 × 3 mm) were sampled in transversal orien-

ation covering all of the brain, including the midbrain. The scanning

ession started with a brief localizer acquisition. Afterwards, functional

ata were acquired in 3 separate runs of ~421 volumes each, to allow

or brief resting periods in between. In order to get information for B 0 

istortion correction of the acquired EPI images, a gradient echo field

ap sequence (TR = 392 ms; TE 1 = 4.92 ms; TE 2 = 7.38 ms; num-

er of slices = 37; voxel size 3 × 3 × 3 mm) was recorded before each

unctional run. Structural images were collected at the end (~5 min), us-

ng a T1-weighted sequence (rapid acquisition gradient echo sequence;

08 sagittal images; voxel size = 0.8 × 0.8 × 0.8 mm; 0.8 mm slice

hickness). 

Head movements were minimized by the use of foam pads and

canner noise was reduced with earplugs. When necessary, vision was

orrected-to-normal via fMRI compatible goggles. The social discount-

ng task was programmed via an in-house software and presented via a

irror that projected a screen lying behind the participant, who made

heir choices via a left and a right button boxes. 
5 
.5.2. fMRI preprocessing 

Imaging data were preprocessed and analyzed with Statistical Para-

etric Mapping (SPM12, Wellcome Trust Centre for Neuroimaging, Uni-

ersity College London, UK) implemented in Matlab R2016a (Math-

orks). After checking raw data quality for each participant using the

PM Check Reg function (Stanford Psychiatric Neuroimaging Labora-

ory), all images were preprocessed by reorienting them according to

he EPI SPM template and coregistered to the fieldmap via FieldMap

oolbox. After the functional images were realigned und unwarped to

he middle volume and all volumes for participants’ motion correction

y using phase correction, ArtRepair toolbox ( Mazaika et al., 2009 ) was

un in order to identify bad volumes. Bad volumes of participants in-

luded in the final sample were not repaired. However, we modeled

hese bad volumes as regressors of no-interest in the statistical analy-

es (see fMRI analyses). Finally, functional and structural images were

oregistered and the images were spatially normalized based on seg-

entation of the anatomical image with resampling to 2 × 2 × 2 mm,

nd spatially smoothed using a 6 mm FWHM Gaussian kernel. High-pass

emporal filtering (using a filter width of 128 s) was also applied to the

ata. 

.5.3. fMRI analyses 

At the first-level analysis, trial-related activity for each participant

as modeled by delta functions convolved with a canonical hemody-

amic response function to model the effects of interest, as well as six

ovariates capturing residual motion-related artifacts, and a temporal

erivative for each regressor of interest to account for slice timing dif-

erences. 

For each participant, relevant contrasts were computed for each gen-

ral linear model (GLM) (see below for details) and entered into second-

evel random effect analysis. The following variables were considered in

he analyses: the loss frame condition; the gain frame condition; gener-

us choices; selfish choices. Comparisons were run via one-way Analyses

f Variance (ANOVAs), within subject, and via one-sample t-tests, where

ppropriate. 

GLM1 searched for differences in BOLD activations between frame

onditions during generous choices, where the onset of a generous

hoice was defined as the participant’s button press to choose the gener-

us option after the monetary options had appeared on the screen (see

ig. 1 ). It included an unmodulated regressor of all generous choices

ade in the loss frame condition and an unmodulated regressor of all

enerous choices made in the gain frame condition. Additionally, the

elfish amount magnitude (see Social discounting task) was included

s trial-by-trial parametric modulator of all main regressors, separately.

n the main manuscript, we additionally considered the reward fore-

one as a parametric trial-by-trial regressor. Note that the reward fore-

one is a linear transformation of, and thus collinear with, the selfish

eward magnitude; neural activations identified by this parametric re-

ressor might therefore reflect selfish amount or reward foregone (see

ain text). Reaction times (RTs) were used as duration to account for

ifferences between gain and loss frames (see Supplementary behav-

oral results). Additionally, missed trials were included as regressors of

o-interest and modeled with duration = 5 s, i.e., the maximum time

llowed to respond. 

Please note that at the level of choice, where the choice onset was

efined as the participant’s button press after the release of the mone-

ary options at each trial, a full model including separate regressors for

oth frames (gain and loss) and both types of choice (selfish and gener-

us), as well as the trial-by-trial selfish amount as parametric regressor,

as possible only for sixteen participants. This was due to participants

ho had to be excluded because they never, or only very rarely (not in

ll experimental runs) chose the selfish alternative in the loss frame. To

ddress potential statistical power concerns associated with small sam-

le size and to attend to potential selective sampling biases, in addition

o generous choice being our main focus, we ran instead the above-

entioned model. Nevertheless, results of this full model ( GLMS1 ), as
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a  
ell as of a model including only selfish choices ( GLMS2 ), are reported

n the Supplementary information for completeness. 

GLM2 tested for the effect of frame condition, and therefore included

n unmodulated regressor of the onsets of the loss frame condition and

n unmodulated regressor of the onsets of the gain frame condition. The

rame onset was defined as the trial start (see Fig. 1 ). The social distance

as included as trial-by-trial parametric modulator of the frame onsets,

eparately for the gain and the loss frames. A stick function was used as

uration. 

To address potential statistical concerns relative to having modelled,

eparately, the two main events of our task (i.e. frame onset and par-

icipants’ response onset), we ran an additional analysis ( GLMS3 ) in-

luding all main regressors and all parametric regressors of both GLM1

nd GLM2. We replicated results of both models, indicating that the

rame regressors do not compete for variance with the choice regres-

ors. Thus, the anterior insula activation has been correctly attributed

o generous choice in the loss frame, making our original interpreta-

ion plausible (see Supplementary information for analysis details and

esults). 

All whole-brain level results as well as ROI-based (see below) results

ere initially thresholded at p < 0.001 (uncorrected), minimum cluster

ize = 5 voxels, and then corrected at the cluster level for multiple com-

arisons ( p < 0.05, family-wise error rate [FWE]). Bad volume onsets

as measured via ArtRepair toolbox; ( Mazaika et al., 2009 )), modeled

ith a stick function, were included as regressors of no-interest in all

he above GLMs. 

We additionally conducted, where relevant (see main text) ROI anal-

ses for VMPFC, TPJ, and insular cortex by using anatomical bilateral

asks from the Harvard-Oxford Atlas ( Jenkinson et al., 2012 ), and the

PM Anatomical Automatic Labeling Toolbox, version 3 ( Rolls et al.,

020 ), via SPM12 in Matlab R2016a. The probability maps of the SPM

natomy Toolbox, version 3.0 ( Eickhoff et al., 2007 ), and Neurosynth

 http://neurosynth.org ) were used for double checking region localiza-

ion throughout GLMs. 

Dynamic causal modeling (DCM) : We used DCM analysis as imple-

ented in SPM12. This analysis focused on the interplay between insula

nd VMPFC and between TPJ and VMPFC, addressing both (i) regions

ndogenous connectivity and (ii) condition specific modulation of the

egions (driving inputs) and their connections (modulatory inputs). We

herefore constructed a hierarchical model with regressors defining both

rame conditions activations against the total baseline activation. Thus,

e entered in the DCM: a regressor of no-interest for baseline connectiv-

ty (‘all trials’, used to correct for global activation) including onsets of

he screen presenting the framing information and the social distance,

nd the onsets of the screen presenting the monetary options, at all tri-

ls; a regressor (‘all loss trials’) including onsets of the screen present-

ng the framing information and the social distance, and the onsets of

he screen presenting the monetary options, for the loss frame trials; a

egressor (‘all gain trials’) including onsets of the screen presenting the

raming information and the social distance, and the onsets of the screen

resenting the monetary options, for the gain frame trials. 

Subject-specific coordinates were guided by ROI-based group activa-

ion maxima in the three network regions from the univariate, group-

evel results (see Results section). Volumes of interest (VOI) spheres,

ith a radius of 6 mm, were built around the posterior insula (GLM2,

34, − 16, 8]), rTPJ (GLM1, [50, − 66, 36]), and VMPFC (GLM2, [2, 50,

 8]). Note that we focused our DCM analysis on the posterior insula

luster only, as we were interested in a baseline frame activation; in-

luding the anterior insula cluster, specific for generous choice within

he loss frame (see Results section), might have biased the results in fa-

or of our hypotheses. Also note that we found TPJ in the choice-related

nalysis (GLM1) only: in our opinion, it was still preferable to opt for

his experimentally driven ROI rather than including an ROI taken from

he literature. Regional time series were extracted as the first eigenvari-

te of the three network regions for ‘all trials’ and mean-corrected for

he effect of interest F-contrast at a liberal threshold of p = 0.1. This
6 
hreshold was lowered for some participants until all regions could be

etected ( Zeidman et al., 2019a , 2019b ). 

Based on our univariate results, we constructed bilinear models

here the endogenous connectivity across the three regions was al-

ays assumed. We specified models with nodes reciprocally connected,

here the gain and loss frame were allowed to modulate all connec-

ions ( Li et al., 2015 ). The resulting 15 models were grouped in two

amilies: A and B. In family A, both condition-specific driving inputs

nd condition-specific modulatory inputs were assumed. In family B,

nly condition-specific driving inputs were assumed. 

Family A included eleven models ( Fig. 2 ). In model 1 (sum of the log-

vidence SF = − 4.0797E + 05, exceedance probability xp = 0.1282), we

ssumed that the gain frame condition had direct inputs on VMPFC and

PJ, and a modulatory input on their connections; the loss frame con-

ition had direct inputs on VMPFC and insula, and a modulatory input

n their connections. In model 2 (SF = − 4.0864E + 05, xp = 0.1294), the

ain frame had a driving input on VMPFC, and a modulatory input on

ts connectivity with TPJ; the loss frame had a driving input on VMPFC

nd a modulatory input on its connectivity with the insula. In model 3

SF = − 4.0829E + 05, xp = 0.005), the gain frame had a driving input on

PJ and a modulatory input on its connectivity with VMPFC; the loss

rame had a driving input on the insula and a modulatory input on its

onnectivity with VMPFC. In model 4 (SF = − 4.0826E + 05, xp = 0.049),

he gain frame had a driving input on VMPFC and a modulatory input

n its connectivity with TPJ; the loss frame had driving input on the in-

ula and a modulatory input on its connectivity with VMPFC. In model

 (SF = − 4.0786E + 05, xp = 0.6595), the gain frame had a driving in-

ut on TPJ and a modulatory input on its connectivity with VMPFC; the

oss frame had a driving input on VMPFC and a modulatory input on its

onnectivity with the insula. Therefore, connectivity between regions

n model 1 to 5 is assumed to be bidirectional. Additionally, in model 6

SF = − 4.0892E + 05, xp = 0.0048), the gain frame had a driving input

n VMPFC and a modulatory input on its connectivity to TPJ; the loss

rame had a driving input on VMPFC and a modulatory input on its con-

ectivity to the insula. In model 7 (SF = − 4.0953E + 05, xp = 0.0009),

he gain frame had a driving input on VMPFC and a modulatory input on

he connectivity from TPJ to VMPFC; the loss frame had a driving input

n VMPFC and a modulatory input on the connectivity from the insula

o VMPFC. In model 8 (SF = − 4.0867E + 05, xp = 0), the gain frame had

 driving input on TPJ and a modulatory input on its connectivity to

MPFC; the loss frame had a driving input on the insula and a modula-

ory input on its connectivity to VMPFC. In model 9 (SF = − 4.0890E + 05,

p = 0.001), the gain frame had a driving input on TPJ and a modula-

ory input on the connectivity from VMPFC to TPJ; the loss frame had a

riving input on the insula and a modulatory input on the connectivity

rom VMPFC to the insula. In model 10 (SF = − 4.0861E + 05, xp = 0),

he gain frame had a driving input on TPJ and a modulatory input on

he connectivity from VMPFC to TPJ; the loss frame had a driving input

n VMPFC and a modulatory input on its connectivity to the insula. In

odel 11 (SF = − 4.0851E + 05, xp = 0.0221), the gain frame had a driv-

ng input on TPJ and a modulatory input on its connectivity to VMPFC;

he loss frame had a driving input on VMPFC and a modulatory input

n the connectivity from the insula to VMPFC. 

Family B included four models ( Fig. 2 ). In model 12

SF = − 4.0886E + 05, xp = 0), the gain frame had driving input

n VMPFC and TPJ; the loss frame had driving inputs on VMPFC and

he insula. In model 13 (SF = − 4.0936E + 05, xp = 0), the gain frame had

 driving input on TPJ and the loss frame had a driving input on insula.

n model 14 (SF = − 4.0999E + 05, xp = 0.0001), both frame conditions’

riving inputs were on VMPFC. In model 15 (SF = − 4.0893E + 05,

p = 0), the gain and the loss frame had driving inputs on all three

egions, insula, TPJ, and VMPC, to check whether at increased number

f connections, the model fitted the data better. 

All the hypothesized models were entered into Bayesian Model Se-

ection (BMS), as implemented in SPM, to determine the best-fit family

nd model. The inference method used to compare the models across

http://neurosynth.org
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Fig. 2. DCM models. Fifteen models were hy- 

pothesized to describe the data. G ray lines rep- 

resent driving inputs. Dashed black lines repre- 

sent modulatory inputs. Thin black lines rep- 

resent bidirectional connectivity. Thick black 

lines represent unidirectional connectivity. 

Since endogenous connectivity is always as- 

sumed between all three regions in all mod- 

els, it is not represented here. Family A , which 

assumed both condition-specific driving inputs 

and condition-specific modulatory inputs, in- 

cludes models 1 to 11. Family B , which assumed 

only condition-specific driving inputs, includes 

models 12 to 15. 
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ubjects and session was random effects (2nd-level, RFX). Bayesian

odel Averaging (BMA) was used for model comparison. Once the opti-

al model was selected, the participant-specific parameters for the two

rame conditions were averaged across the three runs and entered into

roup analysis with one-sample and paired-sample t-tests, where appro-

riate. This allowed us to summarize the consistent findings from the

ubject-specific DCMs using classical statistics ( Cho et al., 2013 ; Li et al.,

015 ; Neufang et al., 2016 ; Wiehler et al., 2017 ; Zhang et al., 2018 ). 

Mediation analysis : This analysis was run via Hayes’s PROCESS-macro

 Hayes, 2017 ) as implemented in the IBM Statistical Package for the

ocial Sciences (SPSS). The analysis aimed at testing the idea that the

ain and the loss frame had an effect on generous behavior through the

ediating influence of condition-specific neural activations. The frame
7 
ondition was included as binary independent variable X (dummy vari-

ble: 1 = gain; 2 = loss), the proportion of generous choices (gain frame

nd loss frame) was entered as dependent variable Y, and the neural ac-

ivations were entered as mediators. Specifically, beta estimates for the

osterior insula [34, − 16, 8; GLM2], VMPFC1 [2, 50, − 8; GLM2], the an-

erior insula [42, 4, − 4; GLM1], TPJ [50, − 66, 36; GLM1], and VMPFC2

0, 54, 14; GLM1] were extracted, at the single-subject level, for both

rames and included in the model, via MarsBaR region of interest tool-

ox for SPM12 ( Brett et al., 2002 ). Neural activations across both frames

ere treated as parallel mediators (model template 4, Hayes, 2017 ). Par-

ially standardized values are reported, and 95% biased-corrected CIs

re adopted. Number of bootstrap samples wa s set to 5000. To deter-

ine the statistical power for mediation, the online tool MedPower was
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sed ( https://davidakenny.shinyapps.io/MedPower/ ) using effects of X

n mediator (M) (path a), of M on Y (path b), and the direct effect of X

n Y (path c ′ ), at alpha = 0.05. Total achieved power was ~0.60. 

. Results 

.1. Social discounting is flatter in the loss than the gain frame 

First, in a set of behavioral experiments, we established that

ur framing manipulation affected generosity towards socially dis-

ant others. In a within-subject design, we elicited social preferences

n a standard version of the social discounting task (the gain frame;

trombach et al., 2015 ) as well as in a loss frame variant (see Fig. 1 ),

nterleaved in a trial-by-trial fashion. In the gain frame, participants

layed with other persons at variable social distance levels, and made

hoices between a selfish alternative, yielding higher monetary payoff

o the participant and zero payoff to the other, and a generous alterna-

ive, always yielding a lower own-payoff of €75 along with a payoff of

75 to the other. In the loss frame, participants were first informed that

he other person had received an initial endowment of €75. The selfish

lternative yielded a variable, higher own-payoff as well as the loss of

he €75 endowment to the other person, hence, resulting in a zero pay-

ff to the other; the generous alternative yielded a fixed €75 payoff to

he participant, and no further consequence to the other, thus leaving

er with the initial €75 endowment. Crucially, the payoff structure was

athematically equivalent across both frame conditions, i.e., the choice

lternatives in the loss frame yielded identical own- and other-payoffs

o those in the gain frame. The main difference between conditions was

hat, in the gain frame, a generous choice would imply a gain of €75

o the other, while in the loss frame, a generous choice would imply

reventing the loss of the previous €75 endowment. Importantly, par-

icipants were repeatedly instructed that the other person was unaware

f her initial endowment, or the loss of it, and that she would only be

nformed about the final outcome of the payoff after implementing the

articipant’s choice at the end of the experiment. Task comprehension,

n particular regarding participants’ understanding that the other per-

on would only be informed about the final outcome, but not about her

ndowment, or loss of it, was further stressed during the explanation of

he incentivization procedure as well as assessed in post-hoc structured

nterviews (see Material and methods). All participants understood the

ask well. 

.1.1. Study 1 

In a first study, data collection was done online and the task was

ot incentive-compatible; participants ( n = 54) were paid a fixed al-

owance of €8.5. In the social discounting task, participants can either

ake a selfish choice or a generous choice, in each frame condition. We

dopted the hyperbolic discount model to describe the effect of fram-

ng on our participants’ behavior as it is the best-documented model

o investigate social discounting, with demonstrated better goodness-

f-fits in comparison to other, e.g., exponential, models (e.g. Jones and

achlin, 2006 ). Specifically, to reconstruct the individual social discount

unctions, separately for the two frame conditions, we fit a standard hy-

erbolic model (see Eq. (1) ( Jones and Rachlin, 2006 ; Strombach et al.,

015 ); Material and methods) to trial-by-trial binary choices (i.e., either

elfish or generous) to estimate the parameter k , a measure of the steep-

ess of the social discount function. Additionally, we determined, for

ach participant and each social distance level, and separately for the

wo frame conditions, the point at which the participant was indifferent

etween the selfish and the generous alternative using logistic regression

 Strombach et al., 2015 ). The difference in reward magnitudes for the

articipant between the two alternatives at the indifference points (see

upplementary results) represented the amount of money a subject was

illing to forego (i.e., reward amount foregone) to increase the wealth

f another person at a given social distance, and could be construed as

 social premium, that is, the price tag participants put on increasing
8 
he wealth of the other. We took the estimated parameter V, the inter-

ept at social distance 0, thus the origin of the social discount function

 Jones and Rachlin, 2006 ; Margittai et al., 2015 , 2018 ; Soutschek et al.,

016 ; Strombach et al., 2015 ), as an indicator of generosity towards

ocially close others ( Soutschek et al., 2016 ; Strombach et al., 2015 ). 

Participants’ generosity dropped much less steeply in the loss com-

ared to the gain frame (median k gain = 0.022, range k gain = 0.18 vs.

edian k loss = 4.74E-11, range k loss = 0.10; Wilcoxon matched pairs

est: Z = 4.97, p < 0.001; r = 0.68; see supplementary Fig. S2a ). The

ifference in social discount functions between frames was most pro-

ounced at high social distance levels, indicating that participants were

ubstantially more generous towards strangers in the loss than the gain

rame. We also found a significant difference in V between frame condi-

ions (median V gain = 87, range V gain = 88 vs. median V loss = 77, range

 loss = 68; Z = 2.78, p < 0.01; r = 0.38) that, however, disappeared

hen removing all participants with zero discounting from the analysis

see Supplementary results). These data suggest that participants were

trongly more generous towards socially distant others in the loss than

he gain frame. 

.1.2. Study 2 

In a second study, we replicated the results of our first experiment.

ata collection was done online and participants ( n = 36) were reim-

ursed for their time with a fixed amount of university credits. We

gain found that participants had flatter social discounting in the loss

han the gain frame (median k gain = 0.020, range = 0.62 vs. median

 loss = 0.0005, range = 0.10; Z = 4.81, p < 0.001; r = 0.80; see sup-

lementary Fig. S2b ), and we found no difference in V between frame

onditions (median V gain = 81, range V gain = 66 vs. median V loss = 80,

ange V loss = 50; Z = 0.38, p = 0.71). Again, these results held when

xcluding participants with null discounting. 

.1.3. Study 3 

Studies 1 and 2 were not incentive-compatible. To determine

hether hypothetical versus real payoffs made a difference in the frame

ffect on social discounting ( Vlaev, 2012 ), we ran a third fully incentive-

ompatible study in a laboratory setting ( n = 31). Payoff was contingent

n the participants’ choices, and was paid out to self and other, identi-

al to ( Strombach et al., 2015 ) and to the fMRI study 4 (see next para-

raph and Material and methods). Once again, we could replicate the

rame effect on k (median k gain = 0.022, range k gain = 0.69 vs. median

 loss = 4E-07, range k loss = 0.48; Z = 3.71, p < 0.001; r = 0.67; see sup-

lementary Fig. S2c ), and there was no difference in the V parameter

etween frame conditions (median V gain = 81, range V gain = 99 vs. me-

ian V loss = 80, range V loss = 88; Z = 1.41, p = 0.16). These results held

hen excluding participants with null discounting. 

Additionally, we plot for all three studies the proportion of generous

hoices, averaged across participants, as a function of the selfish amount

o highlight the flatter decay in generous choices in the loss frame com-

ared with the gain frame, especially at remote social distances ( Fig.

3a,b,c ). Furthermore, the distributions of individual k value differ-

nces and V value differences between frames are shown in Fig. S4a,b,c

or all three studies. 

Moreover, social desirability, as measured via the Social Desirability

cale (SDS-17; Stöber, 2001 ), did not explain the frame effect on social

iscounting parameters (see Supplementary material). 

The result of increased generosity, especially at larger social dis-

ances, in the loss compared to the gain frame in the three behavioral

tudies was also corroborated via a model-free measure, i.e. the area

nder the curve (AUC), as well as via an analysis of the indifference

oints (the selfish reward magnitude at which participants were indif-

erent between the selfish and the generous alternative at each social

istance level and in each frame condition; see Supplementary analyses

nd results). 

Overall these results suggest that, while generosity to socially close

thers was comparable between frame conditions, it decayed signifi-

https://davidakenny.shinyapps.io/MedPower/
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f  
antly less steeply across social distance in the loss than in the gain

rame, indicating that participants were considerably more generous to-

ards socially distant others in the loss frame. 

.2. Neural mechanisms underlying the frame effect on social discounting 

To obtain more substantial insights into the psychological and neu-

al mechanisms underlying this framing effect on social discounting, in

tudy 4 we measured BOLD responses while participants performed both

rame variants of the social discounting task. The fundamental premise

f our study is that the decision motives and their neural correlates differ

etween gain and loss frames. Specifically, we reasoned that generosity

n the gain frame was mainly stimulated by other-regarding considera-

ions. Conversely, we predicted that generous decisions in the loss frame

ere motivated by the desire to comply to social norms, such as the do-

o-harm principle, or the respect of others’ property rights ( Sethi et al.,

996 ) , infringements of which are associated with negative social senti-

ents of guilt and shame. To test this idea, we focused on two main hy-

otheses. We, first, expected that generosity in the gain frame recruited

 network of structures, including VMPFC and TPJ ( Hutcherson et al.,

015 ; Strombach et al., 2015 ), known to represent vicarious reward

alue and prosocial behavior. Second, we hypothesized that brain areas

mplicated in negative social sentiments of social norm transgressions,

uch as the insular cortex (e.g. Paulus et al., 2003 ; Chang et al., 2011 ;

hang and Sanfey 2013 ; Lallement et al., 2013 ; Gu et al., 2015 ; Seara-

ardoso et al., 2016 ; Sethi and Somanathan 2016; Siebenthal et al. 2017 ;

ang et al., 2017 ; Huggins et al., 2018 ), would be selectively recruited

uring generous choices in the loss, but not the gain frame. 

We first replicated, once more, the behavioral framing effect on so-

ial discounting ( n = 30). As before, the drop in generosity across social

istance was pronouncedly flatter in the loss than the gain frame (me-

ian k gain = 0.021, range k gain = 0.16 vs. median k loss = 0.003, range

 loss = 0.28; Wilcoxon matched pairs test: Z = 3.69, p < 0.001; r = 0.67;

ig. 3 a), but, again, there was no difference in the V parameter between

onditions (median V gain = 80, range V gain = 57 vs. median V loss = 80,

ange V loss = 53; Z = 0.88, p > 0.37; the results remained identical when

xcluding participants with null discounting). Additionally, we plot the

roportion of generous choices, averaged across participants, as a func-

ion of the selfish amount ( Fig. 3 b) to illustrate the flatter decay in gener-

us choices in the loss compared to the gain frame, especially at remote

ocial distances. Furthermore, the individual distributions of k value dif-

erences and V value differences between frames are shown in Fig. S4d ,

s well as we plot the choice probability as a function of the difference

n value between the generous and the selfish option ( Fig. S5 ). 

Moreover, neither social desirability (SDS-17; Stöber 2001 ), nor

erspective taking, empathic concern, personal distress, or fantasy (as

easured via the Interpersonal Reactivity Index; IRI; ( Davis, 1983 ;

aulus, 2009 ) explained the frame effect on social discounting parame-

ers (see Supplementary material). 

The above results were corroborated, once again, also via an analysis

f the AUC, as well as via an analysis of the indifference points at each

ocial distance (see Supplementary analyses and results). 

Our first hypothesis predicted activity in brain structures known to

epresent vicarious reward value and prosocial behavior in the gain

rame (similar to Soutschek et al., 2016 ; Strombach et al., 2015 ). Our re-

ults ( GLM1 ; see Material and methods) indeed revealed clusters located

n VMPFC (0, 54, 14, whole-brain p FWE-corr < 0.001) as well as right TPJ

rTPJ; 50, − 66, 36, whole-brain p FWE-corr < 0.035) to be selectively ac-

ivated, in addition to other prefrontal regions, when participants made

enerous choices in the gain frame relative to generous choices in the

oss frame. ROI analyses confirmed significant clusters of activation in

oth VMPFC (p FWE-corr < 0.001) and rTPJ (p FWE-corr = 0.01). Thus, con-

istent with ( Hutcherson et al., 2015 ; Strombach et al., 2015 ), a network

omprising VMPFC and rTPJ seems to underlie the motivation for costly

enerosity in the gain frame ( Fig. 4 ; see supplementary Table S1 ). Ad-

itionally, the selfish amount magnitude, included as trial-by-trial re-
9 
ressor, did not parametrically modulate activity in VMPFC and rTPJ

GLM1; see Material and methods). 

Our second hypothesis predicted that generosity in the loss frame

as motivated by social norm compliance rather than other-regarding

onsiderations; generosity should, consequently, go along with a differ-

nt neural activation pattern in the loss than the gain frame. In a first

tep, we attempted to isolate frame-dependent neural correlates, inde-

endent of participants’ choices. To this end, we searched for differential

eural activity at trial onset, i.e., when participants learned about the

ocial distance level of the other person and which frame was relevant

n the current trial (see Fig. 1 ), by contrasting neural activity between

he two frames ( GLM2 ; see Material and methods). We found signifi-

ant activation in the right posterior insula (34, − 16, 8, whole-brain

 FWE-corr = 0.007) in the loss vs. gain frame contrast, which was accom-

anied by significant activations in frontal regions, including VMPFC

2, 50, − 8, whole-brain p FWE-corr = 0.001), as well as temporal regions

 Fig. 5 ; see supplementary Table S2 for a complete list of activations).

OI analyses confirmed significant clusters of activation in the right

nsula (p FWE-corr = 0.03) as well as in VMPFC (p FWE-corr = 0.02). The op-

osite contrast, gain frame vs. loss frame, did not reveal any significant

ctivation. Social distance information, included as trial-by-trial regres-

or, did not parametrically modulate neural activity in any of these con-

rasts (GLM2; see Material and methods), suggesting that the activations

n insula and VMPFC reflected frame but not social distance information.

In support of this conclusion, we found that the right anterior insula

42, 4, − 4, ROI analysis, p FWE-corr < 0.02; GLM1 , see Material and meth-

ds), was selectively activated during generous choices in the loss frame

elative to generous choices in the gain frame ( Fig. 6 ; see supplementary

able S1 ). The location within the insula mask was slightly anterior to

he peak activation we found at trial onset. 

Our analysis so far suggests that insula activation reflects the psy-

hological motives underlying generous choice in the loss frame. How-

ver, other explanations of our insula finding are conceivable, too. For

nstance, participants made more generous choices overall in the loss

han the gain frame; i.e., they forewent more own-payoff in the loss

han the gain frame, and insula activation might reflect the higher level

f reward foregone in the loss frame. Yet, the trial-by-trial regressor of

eward amount foregone (GLM1; see Material and methods) revealed

o parametric modulation of insula activity, nor of activity in any other

rain region, during generous choices in either frame condition. Addi-

ionally, insula activity is unlikely to reflect the own-reward component

f the generous alternative because it was fixed (always €75) and, thus,

nvariant across trials in both frames. 

.3. Frame-dependent modulation of VMPFC activation by rTPJ and insula

We previously provided empirical support for a network model ac-

ording to which, in a task similar to our gain frame condition, TPJ

ould facilitate generous decision-making by modulating basic reward

ignals in the VMPFC, incorporating other-regarding preferences into

n otherwise exclusive own-reward value representation, thus comput-

ng the vicarious value of a reward to others ( Strombach et al., 2015 ).

ere, we expand on this idea and propose that, in addition to the TPJ-

MPFC connectivity in the gain frame, frame-related information in the

oss frame would activate insula, which in turn would down-regulate

wn-value representations in VMPFC, thus promoting generous choices

y decreasing the attractiveness of own-rewards. Hence, in brief, we

redicted a complex, frame-dependent pattern of connectivity between

nsula, TPJ, and VMPFC that reflects the different motives underlying

enerosity in the gain and the loss frame. 

To identify the relations between those regions, we estimated their

ffective connectivity via DCM analysis ( Friston et al., 2003 ). More

pecifically, we tested the idea that the frame information at the be-

inning of each trial would drive increased insula activation selectively

n the loss frame, and increased TPJ activation selectively in the gain

rame. Additionally, we expected increased endogenous connectivity as
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Fig. 3. Hyperbolic discount function fit and proportion of generous choices at each social distance level (fMRI study 4). ( a ) The change in generosity across 

social distances was captured by a hyperbolic discount model (see main text for details). The figure shows the mean of the participants’ individual best-fitting 

hyperbolic functions, along with the mean amounts foregone (i.e. the social-distance-dependent reward amount that participants were willing to pay to increase the 

wealth of another person by €75; see main text) at each social distance (i.e. 1, 5, 10, 20, 50, 100), computed separately for the gain frame and the loss frame. The 

social discounting curve for the loss frame (dashed line) was significantly flatter than the social discounting curve for the gain frame (solid line). Circles represent 

the amounts foregone for the loss frame, dots represent the amounts foregone for the gain frame. Error bars represent the standard error of the mean. ( b ) Descriptive 

proportion of generous choices, averaged across participants, as a function of the selfish amount for the loss (circles) and the gain (dots) frame, separately for each 

social distance (SD). 

w  

w  

i  

i  

t  

h

 

f  
ell as condition-specific modulation between each respective region

ith VMPFC. Note that we focused our DCM analysis on the posterior

nsula cluster only, as we were interested in a baseline frame activation;

ncluding the anterior insula cluster, specific for generous choice within
10 
he loss frame (see above), might have biased the results in favor of our

ypotheses. 

In total we defined 15 models (see Fig. 2 ), grouped into two model

amilies: A, which assumed both condition-specific driving inputs and
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Fig. 4. Generous choices in the gain frame correlate with VMPFC and rTPJ activity. VMPFC (MNI peak [0, 54, 14]) ( a ) as well as right TPJ [50, − 66, 36] ( b ) 

were selectively activated during [generous choice in gain frame > generous choice in loss frame] (GLM1; p < 0.05 FWE whole-brain corrected at the cluster level; 

for illustration purposes, activations are displayed at p < 0.001, uncorrected, minimum cluster size ≥ 5). Color bar indicates T-value. 

Fig. 5. The loss frame information recruits the insula and VMPFC. Insula [34, − 16, 8] ( a ) as well as VMPFC [2, 50, − 8] ( b ) were selectively activated during 

[loss frame > gain frame] onset. (GLM2; p < 0.05 FWE-corrected at the cluster level; for illustration purposes, activations are displayed at p < 0.001, uncorrected, 

minimum cluster size ≥ 5). Color bar indicates T-value. 
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Table 1 

DCM estimated parameters of the winning model and statistics. Val- 

ues are expressed as mean ± standard error (s.e.). Statistics refer to paired 

t-tests between the modulatory activity and the respective endogenous 

connectivity, and to one-sample t-tests against 0 for driving inputs. t = t - 
value; p = p -value; subscript numbers are degrees of freedom; ∗ = p < 
0.05; endo = endogenous connectivity; mod = modulatory connectivity; 

drivInp = driving input; Gain = gain frame; Loss = loss frame; TPJ = tem- 

poroparietal junction; INS = insula; VMPFC = ventromedial prefrontal 

cortex. Arrows indicate connectivity direction. 

DCM estimated parameters mean ± s .e. Statistics 

endo: TPJ → VMPFC 0.05 ± 0.03 –

endo: VMPFC → TPJ 0.02 ± 0.03 –

endo: INS → VPMFC 0.05 ± 0.02 –

endo: VMPFC → INS 0.01 ± 0.02 –

mod_Gain: TPJ → VMPFC 0.03 ± 0.09 t 29 = − 0.13, p = 0.90 

mod_Gain: VMPFC → TPJ − 0.03 ± 0.08 t 29 = − 0.53, p = 0.60 

mod_Loss: INS → VMPFC − 0.22 ± 0.09 t 29 = − 2.56, p = 0.02 ∗ 

mod_Loss: VMPFC → INS − 0.02 ± 0.07 t 29 = − 0.30, p = 0.80 

drivInp_Gain: TPJ 0.04 ± 0.03 t 29 = 1.31, p = 0.20 

drivInp_Loss: VMPFC 0.00 ± 0.03 t 29 = 0.10, p = 0.92 
ondition-specific modulatory inputs; B, which assumed only condition-

pecific driving inputs. 

Among the two model families tested, model comparison favored

amily A, i.e., the family of models that assumed condition-specific ef-

ects at the level of both driving input and modulatory input (family

 expected posterior probability: 0.9678 vs. family B expected pos-

erior probability: 0.0322). The winning model was model number 5

sum of the log-evidence SF = − 4.0786E + 05, exceedance probability

p = 0.6595), which assumed that the gain frame had an effect on the

PJ and its connectivity with the VMPFC, while the loss frame had an

ffect on the VMPFC and its connectivity with the insula (i.e., connec-

ivity between regions is assumed to be bidirectional). 

Concerning the driving inputs, we compared the average activity in

PJ in the gain frame against 0, and the average activity in VMPFC

n the loss frame against 0 (we checked, beforehand, that no effect of

epetition across runs was present; all ps > 0.18), but none of the driving

nputs was significantly different from 0 (all ps > 0.26; Table 1 ). 

Next, when addressing the modulatory inputs, the only significant

ifference was found in the loss frame for modulatory activity from the

nsula to VMPFC against the endogenous connectivity from the insula
11 
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Fig. 6. Insula activation underlies generous choices in the loss frame. In- 

sula [42, 4, − 4] was selectively activated during [generous choice in loss frame 

> generous choice in gain frame] (GLM1; p < 0.05 ROI FWE-corrected at the 

cluster level; for illustration purposes, activations are displayed at p < 0.01, 

uncorrected, minimum cluster size ≥ 5). Color bar indicates T-value. 
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Fig. 7. Mediation analysis. A mediation model was built to clarify the effect of 

frame conditions (X) on generous choice (Y). Neural activations were entered as 

parallel potential mediators. Numbers are partially standardized effects. ∗ refers 

to significant effects ( p < 0.05). Where two numbers for the same path are re- 

ported, the one on the top refers to the direct effect and the one on the bottom 

refers to the indirect effect (i.e. when the mediators are included in the model). 
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(  
o VMPFC (M modulatory = − 0.2158 vs. M endogenous = 0.04672, p = 0.016,

onferroni corrected), reflecting a significant modulation of endogenous

onnectivity by the loss frame information (all other ps > 0.60; Table 1 ).

n addition, the modulatory input was negative, hinting towards an in-

ibitory influence of insula on VMPFC in the loss frame (as before, there

as no effect of repetition across runs in neither modulatory activity nor

ndogenous connectivity; all ps > 0.13). 

.4. The mediating role of the insula in the frame effect on social 

iscounting 

To provide further support to our idea that the frame effect on so-

ial discounting was brought about by condition-specific neural activity

atterns, we ran a mediation analysis on the relation between frame in-

ormation, generous behaviour, and neural activation in these regions.

ore specifically, frame was entered as independent variable X (gain

nd loss), the proportion of generous choices (gain frame and loss frame)

as entered as dependent variable Y, and the neural activations were

ntered as mediators. We focused on a model where neural activations

cross both frames were treated as parallel mediators. Neural activations

ncluded the posterior insula and the anterior insula, TPJ, and VMPFC

both clusters in GLM1 and GLM2) (see Material and methods for de-

ails). Frame condition significantly correlated with all neural activa-

ions (all ps < 0.05) with the exception of VMPFC (GLM2) ( p = 0.052).

dditionally, while the direct effect of the frame condition on the pro-

ortion of generous choices was not significant ( p = 0.26), the indirect

ffect of anterior insula on it was significant, indicating that it influenced

rame-specific generosity (partially standardized B = 0.15, SE = 0.09,

5% biased-corrected CI 0.003 to 0.36) ( Fig. 7 ). 

In conclusion, our results suggest that the frame effect on social dis-

ounting was mediated by the interplay between insula and VMPFC in

he loss frame, and between TPJ and VMPFC in the gain frame. Thus,

e maintain that the most parsimonious explanation of insula activation

nd its negative modulatory interplay with VMPFC is indeed a frame-

ependent downregulation of own-reward values in the valuation net-

ork during social discounting, thus decreasing participants’ selfishness,

hile TPJ-VMPFC coupling in the gain frame reflects the upregulation of

icarious reward value signals in VMPFC, hence promoting altruism by

ncreasing the attractiveness of the generous option. Thus, in brief, the

ifferent motives underlying generosity in the gain and the loss frame
12 
re reflected by differential, frame-dependent activation and connectiv-

ty patterns in the brain. 

. Discussion 

We provide behavioral and neural evidence for a simple nudge that

ims at increasing individuals’ willingness to provide costly support to

ocially remote others. We adapted a social discounting task where par-

icipants chose between a selfish option – a high gain to self and zero-

ain to the other – and a generous option – a lower gain to self and equal

ain to the other ( Soutschek et al., 2016 ; Strombach et al., 2015 ). Based

n previous evidence that people are strongly reluctant to increase their

wn payoff at the expense of others’ welfare ( Baumeister et al., 1994 ;

hang et al., 2011 ; Chang and Sanfey, 2013 ; Crockett et al., 2014 ),

e framed the generous option either as a monetary gain to the other

gain frame), or as the prevention of the loss of a previous monetary

ndowment to the other (loss frame) ( Everett et al., 2015 ; Li et al.,

017 ; List, 2007 ; Liu et al., 2020 ; Sip et al., 2015 ; Smith et al., 2015 ;

ang et al., 2017 ; Xiao et al., 2016 ; Zheng et al., 2010 ). Crucially, be-

ween frames, the choice alternatives differed only in the description

f the decision problem, but not with regard to their actual economic

onsequences. In a series of four independent studies, we show that the

ocial discount function was significantly flatter in the loss than the gain

rame, indicating that participants were more generous towards socially

emote others if a personal gain implied the other’s loss of their previous

ndowment. Notably, our incentivization procedure made it logically

mpossible for the other persons to know about their endowment, or

he potential loss of it, and participants were explicitly instructed about

his; all that mattered was the final positive payoff to self and others.

et, the fact that our participants were still reluctant to inflict losses to

thers suggests that they had internalized the social norm of not taking

way money from others to such a degree that it prevailed even in the

bsence of any real economic consequences for others. 

We hypothesized that the frame-dependent motives underlying gen-

rosity are dissociable on the neural level. Consistent with our previous

ork ( Strombach et al., 2015 ), we found that generosity in the gain

rame recruited a network of structures, including VMPFC and rTPJ,

nown to represent vicarious reward value and prosocial behavior. By

ontrast, in the loss frame, we expected that the reluctance to maximize

wn-gain at the expense of other-loss would be ideally mediated by so-

ial norm compliance and associated social sentiments, such as the neg-

tive emotions experienced during social norm transgressions, e.g., guilt

nd shame, as well as the aversive experience of unfairness and inequal-

ty. We therefore hypothesized that increased activity in brain regions

ssociated with such social sentiments, specifically the insular cortex,

ould be associated with generous choices in the loss frame specifically

 Bellucci et al., 2018 ; Canessa et al., 2017 , 2013 ; Civai et al., 2012 ;
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w  
orradi-Dell’Acqua et al., 2013 ; Huggins et al., 2018 ; Lallement et al.,

013 ; Lamm et al., 2011 ; Montague et al., 2007 ; Oldham et al., 2018 ;

aulus et al., 2003 ; Samanez-Larkin et al., 2008 ; Siebenthal et al., 2017 ;

inger et al., 2006 ; Sokol-Hessner et al., 2013 ; Sokol-Hessner and Rut-

edge, 2019 ; Spitzer et al., 2007 ; Tomasino et al., 2013 ; Wagner et al.,

011 ; Wang et al., 2017 ; Yu et al., 2014 ). We indeed found that the an-

erior insula was significantly more activated when participants made

enerous choices in the loss frame, relative to the gain frame. Extending

hese findings, we found that also the posterior part of the insula seemed

o be involved in these processes, specifically supporting the represen-

ation of the loss frame information even before the decision was made

see also Droutman et al., 2015 ). Building upon this evidence, we further

xplored how both activation clusters mediated frame-specific social dis-

ounting behavior. We propose and provide empirical support for a net-

ork model that predicts that the frame effect on social discounting was

ssociated with a frame-dependent neural connectivity pattern between

nsula and VMPFC in the loss frame, and TPJ and VMPFC in the gain

rame. More specifically, DCM confirmed that posterior insula activation

t loss frame onset exerted a negative modulatory effect on VMPFC. It is

empting to speculate that a frame-dependent downregulation of own-

eward values in the valuation network during social discounting might

ie at the core of the enhanced generosity observed in the loss frame. By

ontrast, the same analyses confirmed TPJ-VMPFC coupling in the gain

rame, consistent with our previous finding ( Strombach et al., 2015 ) that

ltruism in the gain frame is promoted by increasing the attractiveness

f the generous option through TPJ-related upregulation of vicarious re-

ard value signals in the valuation network. Overall, these results call

or the idea that the motives behind generosity are likely qualitatively

ifferent in the gain and the loss frame, and dissociable on the neural

evel. 

Our analyses revealed two separate clusters within insula; while a

ore posterior cluster was activated in response to general loss frame

nformation, the more anterior cluster was specific to generous choices

n the loss frame. This topographic dissociation within insula is consis-

ent with previous findings suggesting a regional gradient in represent-

ng the level of abstraction of social sentiments during moral decision-

aking (e.g. Droutman et al., 2015 ; Ying et al., 2018 ). This pattern of

esult is in line with the idea that anterior and posterior insula may

ot subserve qualitatively different functions, but rather reflect differ-

nt aspects of the same function, such as the interoceptive and visceral

spects of social sentiments in response to vicarious feelings of potential

oss (posterior cluster), and their relevance for choice selection (anterior

luster). In addition to this, it is worth noting that, unlike insula, TPJ

ctivity was only found at the decision stage but not at the frame infor-

ation stage at trial onset. This time difference in activation allows for

ome speculation on the frame-dependent choice dynamics: it is con-

eivable that, in the loss frame, the fr ame information at trial onset

ignals the frame context, and, hence, prompts the tendency to make

enerous choices largely independent of social distance or selfish re-

ard magnitude. Thus, the decision to be generous in the loss frame

ould be determined at trial onset already, and it would not be influ-

nced by subsequently presented social distance or reward information.

y contrast, in the gain frame, participants trade off selfish (own-payoff

aximization) with other-regarding motives (granting others a gain)

n a social-distance-dependent way ( Strombach et al., 2015 ). This con-

ict between selfish and other-regarding motives can only be resolved

hen all information on frame type, social distance, and own-reward

agnitude is available, that is, at the decision stage. Therefore, it is

nteresting as well as plausible to speculate that, while TPJ might be

nvolved only at a later stage of the decision process, posterior insula

ight signal the frame context, and, hence, prompt generosity already

t trial onset. Future research needs to clarify the specific functional

ifferentiation of anterior versus posterior insula, as well as TPJ, con-

ributions to social economic decision-making, by using, for instance,

nite impulse response (FIR) models or mental chronometry approach

e.g. Menon, 2012 ; Schilbach et al., 2008 ). 
13 
Our findings expand on previous evidence that preventing harm to

thers is a great motivator of prosocial performance ( Everett et al., 2015 ;

ang et al., 2017 ; Xiao et al., 2016 ; Zhang et al., 2017 ; Zheng et al.,

010 ). However, while others have found that harm prevention was par-

icularly pronounced in a public context ( Everett et al., 2015 ) and de-

endent on social feedback ( Sip et al., 2015 ; Smith et al., 2015 ), we show

hat similar cognitive mechanisms can strongly boost generosity even in

 private context and in the absence of social feedback, thus independent

f reputational concerns, judgment by social peers, or third-party pun-

shment threats. This suggests that other-harm prevention might be an

nternalized motive that works unconditionally and universally across

ontexts, regardless of social consequences. In addition, previous ex-

eriments on harm prevention did not manipulate, or provide informa-

ion on, social distance between donor and recipient ( Bardsley, 2008 ;

rockett et al., 2014 ; Everett et al., 2015 ; Li et al., 2017 ; Liu et al.,

020 ; Xiao et al., 2016 ). Hence, while the effects of the resource alloca-

ion mode on social discounting were elusive so far, our findings imply

hat it matters: harm-prevention motives in the loss frame were less de-

endent on social distance than other-regarding considerations in the

ain frame, thus resulting in flatter social discounting. 

A recent study used a similar framing manipulation and also reported

PJ involvement ( Liu et al., 2020 ). However, their study differed from

urs in several important ways. First, the task in Liu et al. (2020) in-

olved trading off own-wealth maximization with avoiding electric

hocks to others. However , their task did not involve social distance

nformation about the recipients of shocks. Second, Liu et al. (2020) did

ot reveal any insula recruitment, or insula-VMPFC connectivity - the

ore finding in our study - related to generosity or task framing. Most

mportantly, perhaps, while Liu et al. (2020) identified TPJ-VMPFC con-

ectivity to be relevant for their frame-related increase in costly harm-

revention, we found instead that insula-VMPFC connectivity was as-

ociated with the frame-related boost in generosity during social dis-

ounting. This suggests that Liu et al. (2020) most likely studied dif-

erent framing-related cognitive and neural mechanisms than the ones

nvestigated here. 

Our results are consistent with the idea that certain costly altruistic

ehaviors are not motivated by genuinely other-regarding considera-

ions, but instead by compliance to internalized social norms. But what

mpels participants to comply to social norms? Here, we propose, along

ith previous evidence ( Chang et al., 2011 ; Spitzer et al., 2007 ), that

ompliance to social norms might be linked to anticipated feelings of

uilt, shame, and remorse, and accompanied by insula activation (see

lso Belfi et al., 2015 ; Sellitto et al., 2016 ), which ultimately sustain

rosocial behavior. According to this view, insula would reflect the neg-

tive sentiment associated with social norm transgressions as they oc-

ur when being responsible for someone else’s loss (i.e. vicarious loss

xperience). Our data show that this social sentiment and accompany-

ng neural signature can be elicited even when the others’ outcomes are

erely described as losses, thus, in the absence of real losses to others. 

The success of our framing manipulation in increasing generosity

ame at a methodological cost: because participants rarely made selfish

hoices in the loss frame, the analyses on selfish choices were under-

owered. Hence, results involving selfish decisions, and how they map

n insula, TPJ, or VMPFC, have to be interpreted with caution. To shed

ore light on the neural correlates of selfish choices in the loss frame,

uture studies should replicate our experiment with a slightly less effec-

ive nudge that would allow for more selfish choices. 

. Conclusions 

The acceptance and support of the principle of a caring society, and

he attitude towards the welfare of socially remote strangers, is central

or a civilization to function well. It seems vital for societies to success-

ully meet current challenges, such as integrating refugees, addressing

conomic inequality, acceding the trials and promises of a globalized

orld ( Kalenscher, 2014 ), or managing the public health implications of
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M  
he current COVID-19 pandemic. Here, we present a simple behavioral

raming manipulation that boosts generosity towards socially remote

thers: framing a selfish choice as a loss to others can motivate proso-

ial behavior, even if the framing of the choice options is irrelevant for

he actual payoff to others. Our neuroimaging data identify insula as the

ore component in a network associated with this enhanced generosity

n the loss frame. Our results imply that prosocial attitudes towards oth-

rs are highly malleable and strongly depend on the architecture of the

ecision problem. The insights gained in this study might, thus, help

n designing policies aimed at increasing the acceptance and support of

he principle of a caring society, and to change the attitude towards the

elfare of socially remote strangers. 
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