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Abstract

Phase-synchronization is a manifestation of interaction between neuronal groups measurable from LFP, EEG or MEG signals,
however, volume conduction can cause the coherence and the phase locking value to spuriously increase. It has been shown that
the imaginary component of the coherency (ImC) cannot be spuriously increased by volume-conduction of independent sources.
Recently, it was proposed that the phase lag index (PLI), which estimates to what extent phase leads and lags between signals from
two sensors are nonequiprobable, improves on the ImC. Compared to ImC, PLI has the advantage of being less influenced by phase
delays. However, sensitivity to volume-conduction and noise, and capacity to detect changes in phase-synchronization, is hindered
by the discontinuity of the PLI, as small perturbations turn phase lags into leads and vice versa. To solve this problem, we introduce
a related index, namely the weighted phase lag index (WPLI). Differently from PLI, in WPLI the contribution of observed phase
leads and lags is weighted by the magnitude of the imaginary component of the cross-spectrum. We demonstrate two advantages
of the WPLI over the PLI, in terms of reduced sensitivity to additional, uncorrelated noise sources and increased statistical power
to detect changes in phase-synchronization. Another factor that can affect phase-synchronization indices is sample-size bias. We
show that, when directly estimated, both PLI and the magnitude of the ImC have typically positively biased estimators. To solve
this problem, we develop an unbiased estimator of the squared PLI, and a debiased estimator of the squared WPLI.
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1. Introduction

Oscillatory neuronal activity has been implied in nu-
merous functions (Buzsáki and Draguhn, 2004; Fries, 2009;
Gray et al., 1989; Pesaran et al., 2002; Salinas and Sejnowski,
2001), such as attention, spatial navigation, perceptual bind-
ing and memory. Oscillatory activity in different areas can
be phase-coupled, i.e., display systematic phase-delays, a phe-
nomenon called phase-synchronization, which has been hy-
pothesized to be an important mechanism for creating a flex-
ible communication structure between brain areas (Engel et al.,
2001; Fries, 2005; Varela et al., 2001). In support of
this hypothesis, correlations between cognitive functions and
long-range phase-synchronization have been demonstrated in
many different areas and species, e.g. (Benchenane et al.,
2010; Buschman and Miller, 2009; Gregoriou et al., 2009;
Pesaran et al., 2008; Roelfsema et al., 1997; Siapas et al., 2005;
von Stein et al., 2000; Womelsdorf et al., 2007).
Traditionally, spectral coherence has been used to quan-

tify phase-synchronization for electrophysiological data (EEG
and MEG) (Adey et al., 1961; Mitra and Pesaran, 1999;
Nunez and Srinivasan, 2006; Walter, 1963). Since coherence
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merely indicates linear correlation between signals, intermin-
gling phase and amplitude correlations, Lachaux et al. (1999)
proposed to use only the relative phase between signals to index
phase-synchronization, resulting in an index called the phase
locking value (PLV).
However, it is well-known that indexing phase-

synchronization can be complicated by four problems: (i)
the presence of a common reference, (ii) volume-conduction
of source activity, (iii) the presence of noise sources, and (iv)
sample-size bias. Volume-conduction of source activity, and,
in case of EEG (but not MEG) data, the use of a common
reference, can spuriously inflate phase-synchronization indices
(Fein et al., 1988; Nolte et al., 2004; Nunez and Srinivasan,
2006; Stam et al., 2007). The problem of volume-conduction
is especially large for scalp EEG and MEG data, because of
their low spatial resolution. However, it can still be significant
when the EEG is measured intracranially (ECoG) or from
electrode tips within the tissue (Local Field Potentials - LFPs)
if a common reference is used and/or the cross-spectrum is
defined over data from spatially close sensors.
To overcome these problems, Nolte et al. (2004) proposed

the imaginary component of the coherency (ImC) as a con-
servative index of phase-synchronization, and showed that vol-
ume conduction of uncorrelated sources cannot ‘create’ a non-
zero ImC, based on the conventional assumption that, for typi-
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cal EEG and MEG frequencies of interest, the quasi-stationary
description of the Maxwell equations holds (Maxwell, 1865;
Plonsey and Heppner, 1967; Stinstra and Peters, 1998), imply-
ing that the conducted electric activity of a single source affects
spatially separate sensors with negligible time delay.
Stam et al. (2007) argued that one disadvantage of the ImC

lies in the fact that it can be strongly influenced by the phase
of the coherency, so that it is most effective in detecting syn-
chronization with a phase lag corresponding to a quarter cy-
cle, and breaks down if the two sources of interest are in phase
or in phase opposition. As a potential improvement on the
ImC, Stam et al. (2007) therefore proposed the phase lag index
(PLI). The PLI estimates, for a particular frequency, to what
extent phase leads and lags between signals from two sensors
are nonequiprobable, irrespective of the magnitude of the phase
leads and lags. In simulations, the PLI performed better than the
ImC in detecting true changes in phase-synchronization, and
was less sensitive to the addition of volume-conducted noise
sources (Stam et al., 2007). Still, PLI’s sensitivity to noise and
volume conduction may be hindered by the discontinuity in this
index as small perturbations turn phase lags into leads and vice
versa, a problem that becomesmore serious for synchronization
effects of small magnitude.
To increase the capacity to detect true changes in phase-

synchronization, to reduce the influence of common noise
sources (and for EEG data, a common reference) and to re-
duce the influence of changes in the phase of the coherency,
we add a new member to the family of phase-synchronization
indices that are based on the imaginary component of the cross-
spectrum, namely the weighted phase lag index (WPLI). The
WPLI extends the PLI in that it weights the contribution of ob-
served phase leads and lags by the magnitude of the imaginary
component of the cross-spectrum; in this way it alleviates the
discontinuity mentioned above. We will demonstrate two main
advantages of the WPLI over the PLI, in terms of their sensitiv-
ity to additional, uncorrelated noise sources and their capacity
to detect true changes in phase-synchronization.
To bridge the analysis in terms of population parameters to

the practical case of data obtained under limited sampling, we
will address a final confounding factor that complicates the
estimation of phase-synchronization, namely sample-size bias,
usually increasing with smaller sample sizes. We will show that
the direct PLI estimator (Stam et al., 2007) is positively biased,
and that the direct estimator of the ImC’s magnitude is typically
positively biased, but can be negatively biased as well. To solve
this problem, we will introduce an unbiased estimator of the
squared PLI and a debiased estimator of the squared WPLI.
The paper is organized as follows. We commence by intro-

ducing a conventional linear mixture model (Section 2), and
existing indices of phase-synchronization (Section 3). This sets
the stage for the definition of the WPLI (Section 4). The com-
parison of theWPLI with previous statistics will proceed as fol-
lows. First, for two correlated sources of interest, we transition
from the case of ideal sensors (i.e., neglecting the reference)
without volume-conduction to the more realistic case of ideal
sensors where the two sources of interest are volume-conducted

(Section 5). Second, we continue with a more realistic case
where uncorrelated, volume-conducted noise sources have been
added (Section 6). Third, we study the effect of changes in the
coherency between the activities of two sources of interest (Sec-
tion 7). After this comparison, we continue with the practical
case where population parameters have to be estimated from
small sample sizes, (Section 8), and finish our theoretical sec-
tion by comparing the statistical power of the WPLI and PLI
estimators (Section 9). Finally, we apply the proposed tech-
niques to actual LFP data recorded from the rat orbitofrontal
cortex (OFC) (Section 10 and 11).

2. The linear mixture model

Suppose we observe real-valued signals from two recording
sensors, for N trials, and T samples per trial. For every j-th
trial ( j = 1, . . . ,N), we receive a 2 × T data matrix S j where
each row of S j corresponds to data from one of the two sensors.
We model the observed data as a linear mixture of K source
activities, represented by the K × T matrix V j. Without loss
of generality, we model the observed data in the frequency do-
main, by using the linearity of the Discrete Fourier Transform
(DFT), as

z j( f ) = Ay j( f ) (1)

where z j( f ) ≡ (z1, j, z2, j)T is a vector of complex-valued Fourier
spectra, obtained by DFT-ing the respective rows of the data
matrix S j; y j ≡ (y1, j, . . . , yK, j)T is a vector of complex-valued
Fourier spectra whose k-th element is obtained by DFT-ing the
k-th sensor row of V j; and

A ≡
[

a1,1 . . . a1,K
a2,1 . . . a2,K

]

(2)

is a 2×K matrix of real-valued (not random) coefficients where
a1,k and a2,k represent the relative influence of the k-th source on
the first and the second sensor, respectively. We call the activity
of the k-th source volume-conducted if both a1,k and a2,k are
non-zero.
This linear mixture model, which is comparable to

the model in Nolte et al. (2004) and Stam et al. (2007),
is based on the conventional assumption that the quasi-
stationary description of the Maxwell equations holds for the
EEG/MEG/LFP frequencies of interest (Plonsey and Heppner,
1967; Stinstra and Peters, 1998); note that this assump-
tion may not be valid for frequencies on the order of
kHz (e.g., as with spike-waveforms) (Plonsey and Heppner,
1967; Stinstra and Peters, 1998). The assumption of quasi-
stationarity justifies that the elements of A are taken as real-
valued and frequency-independent, i.e., do not cause a phase-
shift. They can, however, be negative, for example if the two
sensors are located in the opposite lobes of a dipole field.
Our goal is to make statements about the statistics of the pop-

ulation from which these data are drawn, i.e., about population
parameters. We therefore take the data, in a particular trial,
to be the observed outcomes of a vector of random variables,
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such that certain outcomes (data) occur with certain probabil-
ities. This gives rise to the linear mixture model in terms of
random variables,

Z = AY (3)

where Y ≡ (Y1, . . . , YK)T is a column vector of K complex-
valued random variables whose observed values represent, for
a particular frequency, the Fourier spectra of the sources’ ac-
tivities, and Z ≡ (Z1, Z2)T is a column vector of two complex-
valued random variables, whose observed values represent, for
a particular frequency, the Fourier spectra of the signals ob-
served at the two sensors, respectively. In what follows, we will
omit the frequency-dependency of Z, Y and related variables in
our notation; it is always implicitly assumed.
Let X be a complex-valued random-variable, to which we

will refer as the (non-diagonal part of the) cross-spectrum, de-
fined as

X ≡ Z1 Z
!
2 (4)

where Z!2 is the complex conjugate of Z2. We can write X in
exponential form as X = R exp (iΘ), where R represents mag-
nitude and Θ the relative phase.
For (linearly) uncorrelated source activities, we have

E{YkY
!
l } = 0, where E{.} is the expected value operator. On the

other hand the condition E{YkY
!
l } ! 0, l ! k, implies (linearly)

correlated source activities.

3. Existing indices of phase-synchronization

Before introducing the WPLI and conducting an in-depth
comparison of the various statistics, we first provide definitions
of conventional indices of phase-synchronization in terms of
population parameters (for estimation problems, see Section 8).
The complex-valued coherency is defined as

C ≡
E{X}

√

E
{

M2
1

}

E
{

M2
2

}
, (5)

where M1 ≡ |Z1|, and M2 ≡ |Z2|. The coherence is defined as
|C|, and is always less than or equal to 1.
The phase-locking value (PLV) Lachaux et al. (1999)) is de-

fined as the circular resultant length of the relative phases, i.e.,

P ≡ |E{exp(iΘ)}| . (6)

The observationC > 0 or P > 0 is usually taken as evidence for
underlying source synchronization.
It has been proposed to discard the real component of

the cross-spectrum, based on the following intuitive logic
(Nolte et al., 2004; Stam et al., 2007): The volume-conducted
activity of a single source to two separate sensors determines,
in part, the spectral relationship between signals from these two
separate sensors (’self-interaction’). From the assumption of
quasi-stationarity, it follows that the cross-spectrum between

the volume-conducted activity of a single source at two sepa-
rate sensors has a 0◦ (in phase, real component maximally pos-
itive) or 180◦ (orthogonal phase, real component maximally
negative) phase (see Section 5), i.e., only has a real compo-
nent. This systematic, ’self-interaction’ real component can
create a non-zero coherence and PLV. The imaginary compo-
nent of the cross-spectrum, on the other hand, is zero when the
cross-spectrum has a 0◦ or 180◦ phase, and maximum when it
has a phase of ±90◦. That is: for it to be non-zero, it requires
the phase-delay between signals to be non-zero. Thus, it is not
affected by the 0◦ or 180◦ cross-spectral relationship between
the volume-conducted activity of a single source at two separate
sensors.
More formally, let %{X} and &{X} denote the imaginary

and the real component of the cross-spectrum, respectively.
If all sources are uncorrelated, then E{%{X}} = 0, how-
ever, with volume-conduction, we typically have the inequality
E{&{X}} ! 0, corresponding to a spurious ‘creation’ of a non-
zero PLV and coherence (Nolte et al., 2004). To solve this prob-
lem, Nolte et al. (2004) proposed the ImC, defined as %{C}, as
an index of phase-synchronization, based on the rationale that
if all sources are uncorrelated, then the equality E{%{C}} = 0
follows from E{%{X}} = 0 and (5). With restrictions, the sign
of the ImC, sgn(%{C}), indicates whether signals from the first
sensor tend to phase lead or lag signals from the second sen-
sor, and the strength of phase-synchronization can be indexed
by the magnitude of the ImC, i.e., |%{C}|.
Stam et al. (2007) argued that the ImC can be strongly deter-

mined by the phase of the coherency and the normalization by
the power spectrum, resulting in decreased sensitivity for de-
tecting changes in phase-synchronization, and increased noise-
sensitivity. Therefore, Stam et al. (2007) introduced the PLI,
which is defined as

Ψ ≡

∣
∣
∣
∣
∣
E
{

sgn
(

%{X}
)}
∣
∣
∣
∣
∣
, (7)

where Ψ ≤ 1, and the signed PLI is defined as Ψs ≡
E{sgn(%{X})}.

4. The weighted phase-lag index

As will be argued in more detail below, PLI’s sensitivity to
noise and volume conduction is hindered by the discontinu-
ity in this measure as small perturbations turn phase lags into
leads and vice versa, a problem that becomes more serious for
synchronization effects of small magnitude (Section 6). Fur-
ther, improvement can be made in detecting changes in phase-
synchronization (Section 7 and 9). Therefore, we introduce a
novel measure of phase-synchronization, called the WPLI, as

Φ ≡

∣
∣
∣
∣E
{

%{X}
}∣∣
∣
∣

E
{∣
∣
∣%{X}

∣
∣
∣

} =

∣
∣
∣
∣E
{∣
∣
∣%{X}

∣
∣
∣ sgn
(

%{X}
)
}∣∣
∣
∣

E
{∣
∣
∣%{X}

∣
∣
∣

} . (8)

The respective numerators of the WPLI and the magnitude of
the ImC are identical, and differ only by the normalization in the
denominator. The relationship with the PLI lies in the fact that
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the WPLI weights sgn(%{X}) by |%{X}|. Further note that the
inequality 0 ≤ Φ ≤ 1 holds, since the WPLI takes its maximum
if Pr{sgn(%{X}) = 1} = 1 or Pr{sgn(%{X}) = −1} = 1, where
Pr{.} denotes probability, in which case

∣
∣
∣
∣E
{∣
∣
∣%{X}

∣
∣
∣ sgn
(

%{X}
)}
∣
∣
∣
∣ =

E
{∣
∣
∣%{X}

∣
∣
∣

}

.
Note that theWPLI and the PLI are based solely on the imag-

inary component of the cross-spectrum. The ImC, on the other
hand, normalizes the imaginary component by the signal am-
plitudes, i.e., it is not based solely on the imaginary compo-
nent of the cross-spectrum. Adding uncorrelated noise sources
causes signal amplitudes to increase, increasing the normal-
ization term of the ImC, while leaving the nominator of the
ImC, E{X}, unaltered. The magnitude of the imaginary com-
ponent of the cross-spectrum captures only part of the signal
amplitudes; if it captures only a small portion, then conse-
quently the ImC will be small. This may occur despite the
fact that the imaginary component of the cross-spectrum may
be very systematically distributed, which would indicate strong
phase-synchronization. As argued and shown in simulations
by Stam et al. (2007), the normalization of the ImC by signal
amplitudes may make it more sensitive to adding uncorrelated
noise sources and changes in the phase of the coherency (Sec-
tion 6 and 7).

5. Volume-conducting correlated sources of interest

We start by considering the case where we have no noise
sources added and two ideal sensors, i.e., where we have a neu-
tral reference (as would be ideal for LFP/EEG) or no reference
(as is the case for MEG); the latter reduction is justified because
the problem caused by a common reference is identical to the
problem of adding a volume-conducted noise source, since ref-
erencing can be described as a linear superposition of the poten-
tial of the channel of interest with the negative of the potential
of the reference channel.
Suppose that our goal is to index the phase-synchronization

between the activities of two spatially separate, correlated
sources of interest. In the ideal case, there is no volume-
conduction, and each recording sensor would exclusively
sample from one of the two sources, such that A =

((a1,1, 0), (0, a2,2)). In practice however, the activities of
the sources of interest are volume-conducted, i.e., A =

((a1,1, a1,2), (a2,1, a22)), where the inequalities |a1,1| > |a2,1| and
|a2,2| > |a1,2| follow from the assumption that the k-th recording
sensor (k = 1, 2) is spatially selectively sampling the activity
from the k-th source.
From (3) and (4), it follows that the cross-spectrum between

the activities of the two sources is given by the equality

X = a1,1Y1a2,2Y
!
2 + a1,2Y2a2,1Y

!
1

︸!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︸

complex-valued

+

2∑

k=1
a1,kYk a2,kY

!
k

︸!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!︸

‘self interaction’, real-valued

. (9)

Because the last term on the right-hand side of (9), to which
we henceforth refer to as the ‘self-interaction’ term (following

the terminology of (Nolte et al., 2004)), is real-valued only, the
equality%{−Y2Y!1 } = %{Y1Y

!
2 } holds, and for any two complex-

valued variables c1 and c2, the equality %{c1 + c2} = %{c1} +
%{c2} holds, the equalities

%{X} =
(

a1,1a2,2 − a2,1a1,2
)

%{Y1Y
!
2 } (10)

and

sgn
(

%{X}
)

= sgn
(

a1,1a2,2 − a2,1a1,2
)

sgn
(

%{Y1Y!2 }
)

. (11)

follow.

5.1. Effect of volume-conducting correlated sources of interest
on the WPLI

From (8) and (10), the equation |x y| = |x| |y| (for any real-
valued x and y), and the equation E{cU} = cE{U} (for any
constant c and random variable U), it follows that

Φ =

∣
∣
∣
∣
∣
∣
E
{
(

a1,1a2,2 − a2,1a1,2
)

%
{

Y1Y!2
}
}∣
∣
∣
∣
∣
∣

E
{
∣
∣
∣
∣

(

a1,1a2,2 − a2,1a1,2
)

%
{

Y1Y!2
}∣∣
∣
∣

}

=

∣
∣
∣
∣

(

a1,1a2,2 − a2,1a1,2
)∣∣
∣
∣

∣
∣
∣
∣
∣
∣
E
{

%
{

Y1Y!2
}
}∣
∣
∣
∣
∣
∣

∣
∣
∣
∣

(

a1,1a2,2 − a2,1a1,2
)∣∣
∣
∣E
{
∣
∣
∣
∣%
{

Y1Y!2
}∣∣
∣
∣

}

=

∣
∣
∣
∣
∣
∣
E
{

%
{

Y1Y!2
}
}∣
∣
∣
∣
∣
∣

E
{
∣
∣
∣
∣%
{

Y1Y!2
}∣∣
∣
∣

} (12)

proving that the WPLI is not affected by volume-conducting
correlated sources of interest. Surprisingly, the volume-
conduction mixture coefficients from A fall away easily.

5.2. Effect of volume-conducting correlated sources of interest
on the PLI

From 7 and 11, and E{cU} = cE{U} for a constant c and
random variable U, it follows that

Ψ =

∣
∣
∣
∣
∣
E
{

sgn
(

a1,1a2,2 − a2,1a1,2
)

sgn
(

%{Y1Y
!
2 }
)}
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
E
{

sgn
(

%{Y1Y
!
2 }
)}
∣
∣
∣
∣
∣

(13)

showing that, like the WPLI, the PLI is not affected by volume-
conducting correlated sources of interest. From 11, it follows
that the sign of the signed PLI can be affected however.

5.3. Effect of volume-conducting correlated sources of interest
on the ImC

It follows from (3) and (5) that

%{C} =
E
{(

a1,1a2,2 − a2,1a1,2
)

%
{

Y1Y!2
}}

√

E
{
∣
∣
∣a1,1Y1 + a1,2Y2

∣
∣
∣
2
}

E
{
∣
∣
∣a2,2Y2 + a2,1Y1

∣
∣
∣
2
}
. (14)
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We conclude from (11) that the sign of the ImC can be af-
fected by volume-conducting the correlated sources of interest.
However, an increase in volume conduction (i.e., a relative in-
crease in |a2,1| and |a1,2| towards |a1,1| and |a2,2|, respectively)
can both increase and decrease the ImC, depending on the dis-
tribution of the relative phase between Y1 and Y2, as will be
demonstrated by the following two examples.
Example (i): Suppose that A contains only positive elements,

and that, for all observations of Y1 and Y2 that have non-zero
probability, &{Y1Y∗2 } > 0, i.e. the phase lag between the two
sources remains between -90◦ and +90◦. It follows that the
denominator in (14) increases as a function of a1,2 and a2,1, but
that the magnitude of the numerator in (14) decreases, so that
|%{C}| decreases as well.
Example (ii): Suppose, again, that A contains only positive

elements, and |Y1+Y2| ≈ 0 for all observations of Y1 and Y2 that
have non-zero probability. If a1,2 and a2,1 increase to about 50%
of a2,2 and a1,1, respectively, then, the denominator is multiplied
by a factor of about 1/4, while the numerator is multiplied by a
factor of about 1 − 1/2 · 1/2 = 3/4, causing |%{C}| to increase
by a factor of about 3.

6. Addition of uncorrelated, volume-conducted noise
sources

Suppose that, in addition to our two sources of interest, we
start adding L − 2 noise sources (Y3, . . . , YL) that are (i) uncor-
related to each other and (ii) uncorrelated to the two sources of
interest Y1 and Y2.
For EEG and LFP recordings, a common reference can be

thought of as transitioning from the case of an ideal sensor (with
electro-neutral or no reference, as with MEG) to adding a single
source to the linear mixture with coefficients (aref, aref). As far
as uncorrelated noise sources whose activity is picked up by the
reference sensor are concerned, we can subsume the reference
problem under this subsection.
Let X0 be the ‘true’ cross-spectrum before the addition of the

noise sources (with an ideal sensor), whose imaginary compo-
nent is defined as%{X0} ≡ %{(a1,1Y1+a1,2Y2) (a2,1Y1+a2,2Y2)!}.
The imaginary component of the resulting cross-spectrum, after
addition of the noise sources, is given as

%{X} = %{X0} + %{Xε} , (15)

where

%{Xε} ≡
L∑

l=3

K∑

k=1
(a1,la2,k − a2,la1,k)%{YlY

!
k } (16)

is a real-valued random variable, and Xε a complex-valued ran-
dom variable. The equality E{%{Xε }} = 0, implying E{%{X0}} =
E {%{X}}, follows from the assumption that the noise sources are
all uncorrelated to each other and to the two sources of interest.,
i.e., E{YlY

!
k } = 0 for 3 ≤ l ≤ L.

Superimposition of uncorrelated, volume-conducted noise
sources adds a systematic real-valued ‘self-interaction’ term to

the cross-spectrum (9), which may lead to a strong, spurious
increase in the coherence and the PLV. On the other hand, the
synchronization measures based on the imaginary part of the
cross-spectrum, the ImC, the PLI and the WPLI, are in gen-
eral decreased by noise addition, or (in the case of PLI) are
increased only in some less typical cases, in which the relative
phase Θ0 is not independent from the amplitude R0, and/or the
distribution of the relative phase is not symmetric and not uni-
modal.

6.1. Effect of uncorrelated noise on the WPLI

We observe that given the event |%{Xε}| ≤ |%{X0}|, the condi-
tional expectation of |%{X0} + %{Xε}| is given by

E
{
∣
∣
∣%{X0} + %{Xε}

∣
∣
∣

∣
∣
∣
∣
∣
∣

∣
∣
∣%{Xε}

∣
∣
∣ ≤
∣
∣
∣%{X0}

∣
∣
∣

}

= E
{
∣
∣
∣%{X0}

∣
∣
∣

}

, (17)

and given the event |%{Xε}| > |%{X0}|, the conditional expecta-
tion of |%{X0} + %{Xε}| is given by

E
{
∣
∣
∣%{X0} + %{Xε}

∣
∣
∣

∣
∣
∣
∣
∣
∣

∣
∣
∣%{Xε}

∣
∣
∣ >
∣
∣
∣%{X0}

∣
∣
∣

}

≥ E
{
∣
∣
∣%{X0}

∣
∣
∣

}

. (18)

Combined with the equality E{%{X0}} = E {%{X}} and 8, it fol-
lows that the WPLI can not be increased, i.e., only be decreased
by adding volume-conducted, uncorrelated noise sources. Fur-
ther, it is decreased only if the probability of observing the event
|%{Xε}| > |%{X0}| exceeds zero, i.e., if Pr{|%{Xε}| > |%{X0}|} >
0, and it is decreased more if Pr{|%{Xε }| > |%{X0}|} is larger,
i.e., if the probability that the cross-spectrum is rotated across
the real axis is larger.

6.2. Effect of uncorrelated noise on the ImC

Since E{%{X0}} = E {%{X}}, the addition of uncorrelated
noise sources leaves the numerator of ImC unaffected, but in-
creases signal power (and thereby the ImC’s denominator), so
that the magnitude of the ImC overall decreases. As pointed
out by (Stam et al., 2007), this may be an explanation for the
observation from simulations that the ImC is more distorted by
adding uncorrelated, volume-conducted noise sources than the
PLI (Stam et al., 2007).

6.3. Effect of uncorrelated noise on the PLI

Note that whereas the equality |E{%{X0}}| = |E{%{X}}| holds,
the equality |E {sgn(%{X0})}| = |E {sgn(%{X})}| in general does
not, although, similar to the WPLI, it holds if Pr{|%{Xε}| >
|%{X0}|} = 0. Consider the typical (or ideal) case in which the
relative phase Θ0 is distributed according to a unimodal, sym-
metric circular distribution with a fixed amplitude R0. With-
out loss of generality we take the circular mean direction of
Θ0 ∈ [0, π] . Adding uncorrelated noise sources will transform
more relative phases with positive sine components into relative
phases with negative sine components than vice versa. Thus,
the inequality |E {sgn(%{X})}| ≤ |E {sgn(%{X0})}| follows.
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However, as was not discussed by Stam et al. (2007), PLI
may increase in less typical cases, such as the bimodal one dis-
cussed in Section 6.4 (under the heading Distribution ii) and
in the following example: Suppose that Θ0 is uniformly dis-
tributed on the circle. In addition, suppose that R0 is much
larger if %{X} ≥ 0 than if %{X} < 0, i.e., that Pr{R0 =
10,%{X} ≥ 0} = 1/2 and Pr{R0 = 1,%{X} < 0) = 1/2. Note that
for this distribution, the equality |E {sgn(%{X0})}| = 0 holds.
When E{|%{Xε }|} is relatively small, Xε will be more likely to
cause %{X} to become positive when %{X0} is negative, than to
cause %{X} to become negative when %{X0} is positive. Conse-
quently, the inequality |E {sgn(%{X})}| > |E {sgn(%{X0})}| fol-
lows for this example.
In general, adding uncorrelated noise source may also in-

crease PLI in the more typical case of a unimodal, but asym-
metric distribution of relative phases. For the PLI to be non-
zero, it is required that the median, i.e., the point that divides
a probability distribution in half, of the imaginary component
of the cross-spectrum is different from zero. Suppose that the
median is zero however, such that the PLI equals zero, but that
the mean of the imaginary component exceeds zero, because
the imaginary components with a positive sign have a larger
magnitude on average (such that the coherence exceeds zero as
well). In that case, adding uncorrelated noise sources may ro-
tate more cross-spectra with a negative imaginary component
across the real axis than cross-spectra with a positive imaginary
component, corresponding to an increase in PLI.

6.4. Comparison of noise-sensitivity of the PLI and WPLI

The examples above can be understood given that the sign
function in the PLI introduces a step-like non-linearity around
the real axis, which may amplify noise. If |%{X0}| is relatively
small, then relatively low-amplitude noise can rotate the cross-
spectrum across the real axis, changing the sign of its imagi-
nary component from -1 to +1. Consequently, for small values
of |%{X}| in the presence of noise, we are less confident about
the observed phase lead or phase lag. Conversely, if |%{X}| is
large, then we are more confident that the observed phase lead
or phase lag corresponds to a ‘true’ phase lead or phase lag.
The problem is alleviated by the weighing procedure introduced
with the WPLI: the magnitude of the imaginary component of
the cross-spectrum is relatively small when the cross-spectrum
is rotated across the real axis, implyingmore gradual changes to
the WPLI when noise sources cause the cross-spectra to rotate
across the real axis.
This rationale is illustrated in Figure 1. Shown in Figure 1A

are cross-spectra observed over multiple trials before the addi-
tion of noise. In Figure 1B, the addition of uncorrelated noise
sources causes one of the cross-spectra (indicated in red) to ro-
tate across the real axis. The PLI (Figure 1C) and the WPLI
(Figure 1D) can be understood as applying different weights
to the sign (indicated by blue and red color) of the imagi-
nary component of the cross-spectrum. When noise rotates a
cross-spectrum across the real axis, then, for the PLI, the out-
come value for this cross-spectrum changes from +1 to -1, even
though the cross-spectrum is very close to the real axis. The

WPLI, on the other hand, assigns a small weight to a cross-
spectrum undergoing a small rotation across the real axis.
We substantiated this rationale with numerical simulations.

The imaginary component of the cross-spectrum was modeled
as%{X} = %{exp(iΘ0)}+iσε, whereΘ0 is the relative phase be-
tween the two sources of interest, ε is an uniformly distributed
random variable on the interval [-1, 1], and σ controls the noise
amplitude. Here and in the following simulations, because the
squared PLI and the squaredWPLI can be estimated with a sig-
nificant reduction in estimator bias (as will be demonstrated fur-
ther below), we will display the values of these statistics instead
of the (unsquared) PLI and the (unsquared)WPLI. We examine
two cases. First, a more typical case in which both PLI and
WPLI are decreasing functions of noise. Second, a less typical
case, in which PLI (but not WPLI) may increase with noise for
certain parameter regimes.
Distribution (i): The phase Θ0 was distributed according to

the von Mises density function (e.g., Fisher (1993)), defined as

P(θ; µ, κ) ≡ 1
2πI0(κ)

exp(κ cos(θ − µ)). (19)

where I0(κ) is defined as the modified Bessel function of
order zero, µ is the circular mean phase, and κ the circu-
lar dispersion. For all κ ∈ {1/9, 3/9, 5/9, 7/9, 1} and µ ∈
{π/8, 2π/8, 3π/8, π/2}, we drew N = 107 observations from the
vonMises distribution (samples are always generated following
Best and Fisher (1979)). Figure 2A and 2B show that, respec-
tively, the PLI and WPLI are decreasing as a function of noise
amplitude σ, especially for µ close to the real axis. The main
point of Figure 2 is that the addition of noise causes a stronger
decrease in the PLI than in the WPLI. Initially, the quotient of
the squared WPLI over the squared PLI, i.e., Φ2/Ψ2, lies be-
tween 1 and 1.7, i.e., the WPLI always exceeds the PLI. For all
parameter choices, the ratio converges to values around 6 as we
increase the noise amplitude (Figure 2C).
Distribution (ii): The relative phase was distributed accord-

ing to Pr{Θ0 = π/2} = 1/2, and Pr{Θ0 = −π/100)} = 1/2,
i.e., there was an equal probability of observing Θ0 = π/2 and
Θ0 = −π/100 (these two respective values were arbitrarily cho-
sen, the main point is that π/2 lies around the imaginary axis
and −π/100 lies closer to, and on the other side of the real
axis). We drew 108 observations from this distribution. Figure
3 shows the PLI and the WPLI as a function of noise ampli-
tude σ. In the regime of relatively small noise amplitudes, the
PLI is an increasing function of noise amplitude (Fig 3). If we
observe Θ0 = −π/100, then low-amplitude noise is capable of
rotating the corresponding cross-spectrum across the real axis,
i.e., changing the sign of the imaginary component of the cross-
spectrum. Only when the noise amplitude equals the magnitude
of the ‘true’ cross-spectrum, it attains enough ‘torque’ to ro-
tate the cross-spectrum across the real axis when we observe
Θ0 = π/2, causing the PLI to become a decreasing function of
noise amplitude. Conversely, in this case as well, the WPLI is a
smoothly decreasing function of the noise amplitude (Figure 3)
for all values of the noise parameter.
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7. Detecting changes in the coherency between sources’ ac-
tivities

Having investigated the effect of adding noise and volume-
conduction, we will now investigate to what extent the descrip-
tive statistics are affected by changes in (i) the phase and (ii) the
magnitude of the coherency (or, the PLV (6)). The influence of
components (i) and (ii), which are the typical parameters of in-
terest in neuroscience experiments, are treated separately in this
section.

7.1. Influence of phase of coherency on WPLI, PLI and ImC

As pointed out by Stam et al. (2007), a potential disadvan-
tage of the magnitude of the ImC as an index of the strength
of phase-synchronization, lies in the fact that its value is not
merely determined by the magnitude, but also strongly by the
phase of the coherency. First, we will discuss the consequences
of changes in the relative phase between the sources of interest
in the absence of volume conduction, and we will discuss the
effect of volume conduction in the next subsection.
Clearly,

|%{C}| =
∣
∣
∣
∣
∣
∣

%{C}
|C|

∣
∣
∣
∣
∣
∣
|C| . (20)

where %{C}/|C| equals sin(arg{C}), i.e., the sine of the phase of
the coherency. It follows that the dynamic range of the ImC’s
magnitude (5) is determined directly by the phase of the co-
herency: for a given C, even for maximal coherence |C| = 1,
ImC’s magnitude will be at most |%{C}/|C||. In addition, it fol-
lows from (20) that if the phase of the coherency between the
activities of the correlated sources rotates, then, given a fixed
value of |C|, the ImC’s magnitude will change accordingly. In
contrast, the WPLI and the PLI always range from 0 to 1, in-
dependent of the phase of the coherency. Furthermore, phase
changes will affect the WPLI and the PLI only to the extent that
the distribution of sgn(%{X}) changes (see Section 7.3).
Example. If Pr{Θ = π/2} = 1, and M1 = M2 = 1, then
|C| = 1, and |%{C}| = 1. Compare this to the case where Θ
is distributed such that Pr{Θ = π/100} = 1, implying |C| =
1, but |%{C}| = sin(π/100), falsely indicating that the ‘true’
interaction is weak. In contrast, the WPLI and the PLI equal 1
for both distributions of Θ.

7.2. Influence of the phase of the coherency on the coherence
and the PLV

If volume conduction is not present, then the coherence and
the PLV are not distorted by a rotation of the phase of the co-
herency. However,with volume conduction, a real-valued ‘self-
interaction’ term is added to the cross-spectrum (9), and the ex-
tent to which this ‘self-interaction’ term affects the coherence
and the PLV is directly modulated by the true phase of the co-
herency.
We demonstrated the interaction between phase and the ‘self-

interaction’ volume-conduction term (9) with simulations. The
cross-spectrum was defined by the equality X = exp(iΘ) + I,

where I equaled 1/2 (Figure 4A) or 1 (Figure 4B), representing
the real-valued ‘self-interaction’ term that arises due to volume
conduction. The relative phase Θ was von Mises distributed.
We then computed, for all κ ∈ {1/20, 3/20, . . . , 79/80}, the PLV
before (open squares) and after adding the volume-conduction
term I. Simulations were performed with 105 observations.
Figure 4 shows the PLV after addition of the volume-

conduction term I as a function of the mean phase µ of Θ,
and the dispersion parameter κ (different lines). The effect of
the real-valued ‘self-interaction’ term on the PLV can be both
positive and negative, depending on µ (Figure 4). For a uni-
form distribution of relative phases in the absence of volume-
conduction, the effect of the real-valued ‘self-interaction’ term
on the PLV is always positive. However, if before addition of
the volume-conduction term I, the PLV is large, then the effect
of the ‘self-interaction’ term I can be strongly negative as well.
The experimental consequence is that, like with ImC, PLI

and WPLI, experimentally observed differences in PLV and co-
herence values cannot, in the presence of volume-conduction,
be interpreted only in terms of the consistency of relative
phases, i.e., the strength of phase-synchronization, without
making assumptions about the stationarity of the phase of the
coherency across experimental conditions. Without this as-
sumption, observed differences in PLV and coherence values
merely indicate a change in the distribution of relative phase
and amplitude, without separating the mean phase parameter
from the phase consistency parameter.

7.3. Detecting changes in PLV and magnitude of coherence

We observe three differences between the WPLI and the PLI
with respect to detecting phase-synchronization, and changes
therein.
(i) Suppose there are two sources of interest, with their cross-

spectrum defined by X = R exp(iΘ). If the coherence exceeds
zero (which typically entails a non-zero PLV), and the phase of
the coherency does not equal 0 or 180◦, then |E{%{X}}| exceeds
zero as well. Thus, the WPLI, as follows from (8), and the
magnitude of the ImC will correctly detect that the activities
of the sources are phase-synchronized. This does not neces-
sarily hold for the PLI, because a non-uniform distribution of
sgn(%{X})) is not necessarily implied by a non-zero coherence
value (e.g., see Figure 3). To be precise, for the PLI to be non-
zero, it is required that the median of the imaginary component
of the cross-spectrum differs from zero. However, for many
probability distributions of the cross-spectrum, e.g., asymmet-
ric distributions, the mean does not coincide with the median of
the imaginary component of the cross-spectrum.
(ii) To compare the performance of WPLI and the PLI in de-

tecting changes in phase synchronization, we studied, in sim-
ulation, their behavior as a function of the consistency of rel-
ative phases (as indexed by the PLV), by generating a sam-
ple of 107 observations from a von Mises distribution, for
µ ∈ {0, π/40, . . . , π/2} and parametrizing κ such that the PLV
ranges in 50 equal steps from 0 to 1. Figure 5 shows the squared
PLI and squared WPLI as a function of the mean phase µ and
the PLV. Both the WPLI and the PLI are increasing functions
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of the PLV, and are increasing functions of µ (Figure 5). The
WPLI has a steeper relationship with the PLV than PLI does
when the PLV lies near zero, suggesting better effectiveness in
detecting small increases in synchronization. An implication of
the larger WPLI values in terms of higher standardized mean
values of its estimator will be explored in Section 9.
(iii) Finally, as shown in Section 6, suppose that the cross-

spectrum of the two sources of interest changes such that
X′ = X +Xη, where Xη is a complex-valued noise-variable with
E{Xη} = 0, then the PLI can, incorrectly, indicate an increase
in the strength of phase-synchronization, while the WPLI will
correctly indicate a decrease.

8. The problem of sample-size bias

We will now study another factor that complicates the use of
phase-synchronization indices, namely sample-size bias, which
is a serious problem when, in practice, the population parame-
ters have to be estimated from only a relatively small sample of
trials.

8.1. Bias of the direct ImC and PLI estimators
The observed data vector x ≡ (x1, . . . , xN) consists of the

measured cross-spectra in N trials, where the j-th element of
x is defined as x j ≡ z1, jz

!
2, j, where the right-hand side terms

are defined in (1). Our goal is to estimate population pa-
rameters associated with the vector x, e.g., the PLI and the
WPLI. We therefore take the input data vector x to be the ob-
served outcome of a vector of independent random variables,
each distributed identically to X, X ≡ (X1, . . . , XN). The j-
th element of X can be written in exponential form as Xj =

M1, j exp(iΘ1, j)M2, j exp(iΘ2, j) = M1, jM2, j exp(i (Θ1, j−Θ2, j)) =
M1, jM2, j exp(iΘ j).
The direct ImC estimator is defined as

%{Ĉ} ≡
∑N

j=1 M1, jM2, j exp
(

iΘ j
)

√(∑N
j=1 M2

1, j

) (∑N
j=1 M2

2, j

)
, (21)

the direct signed PLI estimator as

Ψ̂s ≡
1
N

N∑

j=1
sgn
(

%{Xj}
)

, (22)

the direct PLI estimator as Ψ̂ ≡ |Ψ̂s|, and the direct PLI-square
estimator as Ψ̂2. The direct signed PLI estimator is an unbiased
estimator, since

E{Ψ̂s} = 1
N

N∑

j=1
E
{

sgn
(

%{Xj}
)}

= Ψs . (23)

In contrast, the direct estimator for the PLI, the relevant
quantity for assessment of synchronization strength effects, is
positively biased. To prove this, consider Jensen’s inequality
(Rockafellar, 1997), which states that for any convex function
g and random variable U, the inequality E{g(U)} ≥ g(E{U})

holds. By applying Jensen’s inequality to the direct PLI esti-
mator, with the convex function g(U) = |U | and the random
variable U = 1

N
∑N

j=1 sgn(%{Xj}), we obtain

E
{∣
∣
∣
∣
∣

1
N

N∑

j=1
sgn
(

%{Xj}
)
∣
∣
∣
∣
∣

}

≥

∣
∣
∣
∣
∣
E
{ 1
N

N∑

j=1
sgn
(

%{Xj}
) }
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

1
N

N∑

j=1
E
{

sgn
(

%{Xj}
)}
∣
∣
∣
∣
∣
≡ Ψ (24)

with the strict inequality holding if the probability distribution
of %{Xj} has non zero mass for both positive and negative val-
ues.
We performed simulations to investigate the structure of this

bias. For all 2 ≤ N ≤ 200, we drew 106 samples from a von
Mises distribution with µ = π/4. Figure 6 shows the expected
value of the direct PLI estimator as a function of N. The ex-
pected value of the direct PLI estimator is positively biased,
especially when the PLI is small.
It is often stated that the direct coherence estimator is pos-

itively biased, e.g., see (Benignus, 1969; Maris et al., 2007;
Vinck et al., 2010b; Womelsdorf et al., 2006). In fact, as above,
positive contributions to the estimator bias arise because of the
convexity of the absolute value function which applies to the
numerator of (5) to obtain the coherence. For many joint proba-
bility distributions ofM1, M2 andΘ these positive contributions
prevail. However, other contributions to the bias stem from the
terms in the denominator of (5), which may render the direct
coherence and magnitude of the ImC estimators negatively bi-
ased (see Supplemental Material).

8.2. An unbiased estimator of the squared PLI

We will now define an unbiased estimator of the squared PLI,
simply called the unbiased PLI-square estimator, as

Ω̂ ≡

(

N
2

)−1 N−1∑

j=1

N∑

k=( j+1)
d(Xj, Xk) , (25)

where for any two complex-valued random variables U and V ,
the function d is defined as

d(U,V) ≡ sgn
(

%{U}
)

sgn
(

%{V}
)

, (26)

The normalization (N(N − 1)) equals the number of 2-
combinations (of independent trials). As shown in Figure 7,
the unbiased PLI-square estimator is defined by (i) computing
the imaginary components of the cross-spectra (Figure 7A), (ii)
thresholding them to values of +1 and -1 (Figure 7B) and (iii)
computing all the pairwise products (Figure 7C).
Let X(1) and X(2) be two independent random variables, iden-

tically distributed to X. We define the population parameter
corresponding to the unbiased PLI-square estimator as

Ω ≡ E
{

d
(

X(1), X(2)
)}

. (27)
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The equation E
{

Ω̂
}

= Ω holds, since

E
{

Ω̂
}

≡ E
{(

N
2

)−1 N−1∑

j=1

N∑

k=( j+1)
d(Xj, Xk)

}

=

(

N
2

)−1 N−1∑

j=1

N∑

k=( j+1)
E
{

d
(

Xj, Xk
)}

= Ω (28)

Observe that Ω equals the squared PLI: Define q ≡ Pr{%{X} >
0}. It follows that

Ω =
(

q2 + (1 − q)2
)

− 2q(1 − q) = (2q − 1)2 = Ψ2. (29)

Thus, the expected value of the unbiased PLI-square estimator
equals the squared PLI.
This property of unbiasedness can be intuitively understood

by observing that the expected value of d(Xj, Xk) is the same
for all N(N−1) 2-combinations, implying that the number of 2-
combinations we use to compute an average value of d(Xj, Xk)
does not affect the expected value of this average.
However, note that Ω̂1/2 is not defined for Ω̂ < 0. Thus, the

square root of the unbiased PLI-square estimator is unsuited for
estimating the unsquared PLI. For computational purposes, it is
important to note that the squared PLI estimator can be written
as a function of the direct PLI-square estimator by

Ω̂ =
NΨ̂2 − 1
N − 1

. (30)

By using a similar line of argument as in Vinck et al. (2010b)
(see also Supplemental Material), it can be shown that variance
of the unbiased PLI-square estimator approaches zero asymp-
totically, i.e., as N → ∞, Var{Ω̂} → 0, and hence Ω̂ → Ω. In
other words, Ω̂ is a consistent and unbiased estimator of Ω, and
therefore of the squared PLI. Whether the mean squared error
(MSE) of the unbiased PLI-square estimator is larger than the
MSE of the direct PLI-square estimator, depends on the sam-
ple size and the PLI value, however, the unbiased PLI-square
estimator has, except for extremely small sample sizes, smaller
MSE than the direct PLI-square estimator for low PLI values
(Supplemental Material, Figure 2).

8.3. Definition of debiased estimator of the squared WPLI
We will now define a debiased (i.e., some sample-size bias

remains) estimator of the squared WPLI (8), simply called the
debiased WPLI-square estimator, as

Ω̂w ≡

∑N
j=1
∑

k! j%{Xj}%{Xk}
∑N

j=1
∑

k! j

∣
∣
∣
∣%{Xj}%{Xk}

∣
∣
∣
∣

. (31)

This estimator can be written as a weighted statistic, i.e.,

Ω̂w =

∑N
j=1
∑

k= j+1Wj,k d(Xj, Xk)
N(N − 1)W̄

, (32)

where the weight Wj,k ≡ |%{Xj}%{Xk}|, W̄ is the average
weight, called the weight normalization, defined as W̄ ≡

1
N(N−1)

∑N
j=1
∑

k= j+1Wj,k, and the function d is defined in
(26). The normalized weights are defined by the expression
Wj,k / (N(N − 1)W̄) and sum up to one. If all weightsWj,k equal
1, then (32) simplifies to the unbiased PLI-square estimator.
The debiased WPLI-square estimator is computed by (i)

computing the imaginary components of the cross-spectra (Fig-
ure 7), (ii) computing the average imaginary component of the
cross-spectra (Figure 8, top), and (iii) normalizing by the com-
puted average over the magnitudes of the imaginary component
of the cross-spectra (Figure 8, bottom).
The corresponding population parameter of the debiased

WPLI-square estimator is defined as

Ωw ≡
E
{

%{X(1)} %{X(2)}
}

E
{∣
∣
∣%{X(1)} %{X(2)}

∣
∣
∣

} ≡ Φ2 , (33)

where Φ is defined by (8), and the second step of (33) follows
from the property that for any two independent random vari-
ables U1 and U2, the expected value operator is multiplicative,
i.e., E{U1U2} = E{U1}E{U2}. Note that, as N → ∞, Ω̂w → Ωw,
i.e., the debiased WPLI-square estimator is a consistent estima-
tor of the squared WPLI.

8.4. Bias of the debiased WPLI-square estimator
Similar to the unbiased PLI-square estimator, the estima-

tion procedure described above avoids the contributions to bias
coming from the convexity of the function to be estimated, how-
ever, it is possible that the estimator is biased. The reason for
this is that the expected value of Ω̂w cannot be separated into a
sum of N(N−1) expected values, because of the division by W̄.
The bias of Ω̂w, which we call a ‘weighting bias’, arises as fol-
lows. For all N(N − 1) 2-combinations, let the random variable
W be identically distributed toWj,k, and define the ratio

ζ j,k ≡
Wj,k/E{W}
Wj,k/W̄

=
W̄

E{W}
. (34)

Let the observed value of Wj,k be defined as Wj,k = wj,k. Note
that E{W̄ | Wj,k = wj,k} =

1
N(N−1) ((N(N − 1) − 1) E{W} +Wj,k).

The equation

E{ζ j,k | Wj,k} = 1 +
Wj,k − E{W}
N(N − 1) E{W}

(35)

follows. If we observe ζ j,k > 1, then the observed value of the
ratio Wj,k/W̄ underestimates the (population parameter) ratio
Wj,k/E{W}. If the observed value of Wj,k is relative large, i.e.,
if wj,k > E{W}, then the expected value of the weight normal-
ization, i.e., E{W̄ | Wj,k = wj,k}, will also be relatively large. As
N → ∞, ζ j,k → 1 for all N(N − 1) 2-combinations, retrieving
estimator consistency.
If the WPLI exceeds the PLI, then the debiasedWPLI-square

estimator will be negatively biased for small sample sizes. If,
however, the PLI exceeds the WPLI, then the debiased WPLI-
square estimator will be positively biased for small sample
sizes. The same sort of ‘weighting bias’ is inherent to the mag-
nitude of the ImC and the coherence (see Supplemental Mate-
rial).
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To further investigate the bias of the debiased WPLI-square
estimator we performed simulations, generating 106 samples
from the von Mises distributions with µ = π/4 (Figure 9A)
and µ = π/8 (Figure 9B), respectively. We computed the aver-
age debiased WPLI-square estimator and unbiased PLI-square
estimator value across samples as a function of N. The debi-
ased WPLI-square estimator was negatively biased, and con-
verged rapidly to the squared WPLI (Figure 9). For example,
for N > 30, the remaining negative bias was very small.

9. Comparison between the statistical power of the squared
PLI and WPLI estimators

To further characterize the sampling distribution of the un-
biased PLI-square estimator and the debiased WPLI-square es-
timator, we determined the ratio of the sample mean over the
sample standard deviation, i.e., the standardized mean. The rel-
ative phase was von Mises distributed. Figure 10 shows the
standardized mean as a function of sample size, for different
values of the phase consistency (colors) and the mean phase
(subpanels A and B), separate for the PLI (dotted) and WPLI
(solid). As demonstrated in Figure 10, the debiased WPLI-
square estimator has a larger standardized mean than the unbi-
ased PLI-square estimator does. The implication of this finding
is that, for a von Mises distribution of the relative phase, the de-
biased WPLI-square estimator has larger statistical power than
the unbiased PLI-square estimator, i.e., has a higher probability
of correctly rejecting the null hypothesis that there is no phase-
synchronization.

10. Application to experimental LFP data: Methods

To demonstrate the usefulness of the developed phase-
synchronization indices, we applied them to actual neuronal
data. Methods on the behavioral paradigm and recordings tech-
niques have been described in detail in (van Wingerden et al.,
2010a,b; Vinck et al., 2010b). We recorded LFP activity
from the rat orbitofrontal cortex (OFC) by using closely sep-
arated (<1mm, smallest horizontal separation between elec-
trodes <200µm, although the exact distance for a specific
sensor pair is unknown) electrodes. Rats were performing
a two-odor discrimination task. When the rat sampled the
‘Go-odor’ (S+), a reward (sucrose solution) was delivered
when the rat made a sustained poke (1000 ms) at the fluid
well (correct go condition). Conversely, when the rat sam-
pled the ‘NoGo-odor’ (S-), quinine solution (a bitter sub-
stance) was delivered when the rat made a sustained response
at the fluid well (incorrect go condition). All data analy-
sis was performed in MATLAB, using the Fieldtrip Toolbox
(http://www.ru.nl/neuroimaging/fieldtrip/). Analysis of LFP ac-
tivity was performed for the 2000 ms period preceding the fluid
delivery, while the rat was anticipating rewards. This 2000 ms
period was divided into the movement period (-2000 ms to -
1000 ms), in which rats made whole body-movements towards
the fluid well, and the waiting period (-1000 ms to 0 ms), in

which rats maintained a nose-poke in the fluid well and re-
frained from whole body movements. All computations were
performed separately for the correct go condition, which was
rewarded with sucrose solution, and the incorrect go condition,
which was negatively reinforced with quinine solution. For ev-
ery t ∈ {−2000,−1990, . . . ,−10, 0}ms, the LFP segment in the
period [t − 250, t + 250] ms was multiplied by a Hann win-
dow function and Fast-Fourier-Transformed, with the number
of samples equaling Fs × 500ms, and the sampling frequency
Fs equaling 1874. The frequency resolution thus equaled 2 Hz.
The cross-spectrum for all pairs of two separate LFP sen-

sors was then computed. For every time-frequency point, we
computed several ‘volume conduction insensitive measures’,
namely the debiased WPLI-square estimator (31), the unbiased
PLI-square estimator (25), the direct PLI square Ψ̂2 (22), the
(unsquared) magnitude of the ImC (21). For comparison, we
also computed an unbiased, ‘volume conduction sensitive mea-
sure’, namely the PPC (Vinck et al., 2010b), whose expected
value equals the squared PLV (population parameter). These
statistics where then averaged across all the unique LFP sen-
sor pairs that were available within a given session, and subse-
quently averaged across the 17 available sessions.

11. Application to experimental LFP data: Results

As described in van Wingerden et al. (2010b), LFP ‘theta’-
band (here about 6Hz) power in OFC was higher during the
correct go waiting (for sucrose) period than during the incorrect
go waiting (for quinine) period.
However, the latter study did not investigate whether (i) the

activities of spatially separate OFC populations become more
theta-band coherent during the correct go waiting (for sucrose)
period than during the incorrect go waiting (for quinine) pe-
riod and the movement period, and (ii) whether systematic theta
phase delays exist between the activities of spatially separate
OFC populations during the movement and the waiting period.
These questions are difficult to answer by means of standard
indices of phase-synchronization, e.g., the PLV, because these
may be spuriously increased or decreased by volume conduc-
tion.
Volume conduction may cause both cross-talk between the

neuronal sources proximal to each electrode (because of the
short inter-sensor distance) and the undesired interference from
distance sources. In particular, the rat hippocampus generates
very strong field potentials in the theta band, and is a major
source of volume conduction that affects many distant, cortical
areas (Sirota et al., 2008). Volume-conduction of hippocam-
pal activity is especially expected during the movement pe-
riod, when the rat makes whole-body movements. In addi-
tion, volume-conduction coming from local sources and com-
mon referencing is expected to cause an elevation of the PLV
(for LFP-LFP pairs) at all time-frequency combinations. These
volume-conducted related increases in the PLV should not be
accompanied by a concurrent increase in the WPLI (and PLI).
Previously, we have shown that, during the waiting period,

spiking activity from OFC electrodes is phase-locked, in the
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theta frequency-band, to OFC LFPs from different electrodes,
suggesting that there may be true phase-synchronization be-
tween spatially separate LFPs that occurs at a non-zero phase-
delay (van Wingerden et al., 2010b). If so, then we expect an
increase in LFP-LFP WPLI (and PLI) values concurrent with
an increase in PLV values.

11.1. PPC during waiting and movement period
We first examined a ‘volume conduction sensitive measure’

of phase-synchronization. We opted for an unbiased statistic,
namely the PPC, because the number of trials per session was
relative small and imbalanced, with about three times more tri-
als for the correct (session mean ± SEM was 38.12± 3.59) than
for the incorrect go condition (13.23 ± 1.96).
Figure 11 shows PPC values as a function of time and fre-

quency, for the correct go waiting (11A) and incorrect go wait-
ing (11B) periods separately. A selective increase in theta-
band PPC values was observed during the correct go waiting
(for sucrose) period (Figure 11). Based on this finding in iso-
lation, one might conclude that this indicates increased theta-
band synchronization between underlying sources. However,
in addition, an increase in theta-band PPC values was also ob-
served during the movement period (Figure 11C). This made us
suspect volume conduction of hippocampal potentials: in fact,
theta-band oscillations can be predominantly observed in the
hippocampus during active, whole-body movements, which, in
the current task, typically occurred during the movement pe-
riod, but not during the waiting period. Finally, we observed
that for all time-frequency combinations, the baseline PPC val-
ues exceeded 0.2, even though the PPC is an unbiased statistic.

11.2. WPLI, PLI and ImC during waiting and movement period
Because the PPC is a ‘volume-conduction sensitive’ mea-

sure, it is possible that all of the observed effects can be ex-
plained by volume conduction of local (i.e., OFC activity) and
distant sources (e.g., the hippocampus). We therefore inves-
tigated the time-frequency patterns of the ‘volume-conduction
insensitive measures’, and report the following three findings.

11.2.1. Comparison of WPLI, PLI and PPC
(i) The respective theta-band values of the debiased WPLI-

square estimator (Figure 12, top panel), the unbiased PLI-
square estimator (Figure 12, middle panel), and the direct PLI-
square estimator (Figure 12, bottom panel), were selectively el-
evated during the correct go waiting (for sucrose) period (Fig-
ure 12), suggesting that, firstly, the corresponding increase in
theta-band PPC values reflects true theta-band synchronization
between the activities of spatially separate OFC populations,
and that, secondly, this increase in theta-band synchronization
corresponds to systematic theta phase delays between spatially
separate OFC populations. During the correct go waiting (for
sucrose) period, the average mean phase delay between signals
from two sensors was, at 6 Hz, 16.97◦, which corresponds to a
mean delay of 7.86 ms.
(ii) The increase in theta-band PPC values during the move-

ment period was not reflected in the respective values of the

debiased WPLI-square estimator and the unbiased PLI-square
estimator (Figure 12), consistent with our interpretation of it
reflecting volume conduction of hippocampal activity.
(iii) The indiscriminate elevation of PPC values above 0.2

for all time-frequency combinations was not observed for the
debiased WPLI-square estimator and the unbiased PLI-square
estimator (Figure 12), suggesting that this indiscriminate eleva-
tion is caused by volume conduction.

11.2.2. Comparison between estimators of the WPLI, PLI and
ImC

A comparison of the WPLI-square, PLI-square and ImC es-
timators revealed three differences.
(i) As predicted from Figure 5, the unbiased PLI-square es-

timator theta peak was smaller than the debiased WPLI-square
estimator theta peak, i.e., the debiased WPLI-square estimator
had a larger dynamic range than the unbiased PLI-square es-
timator (Figure 12). Correspondingly, the z-scored (i.e., ratio
of mean to SEM) debiased WPLI-square estimator theta values
(Figure 13, top panels) were about 50% larger than the z-scored
unbiased PLI-square estimator values (Figure 13, bottom pan-
els) during the correct go waiting period, as predicted from Fig-
ure 10.
Because the debiased WPLI-square is expected to approach

the squared WPLI from below when the WPLI exceeds the
PLI, the sample-size bias of the debiased WPLI-square estima-
tor may only have lead to an under-estimation of the difference
between PLI and WPLI.
(ii) An estimator bias was visible for the direct PLI-square

estimator (Figure 12, bottom panels), especially for the incor-
rect go condition. Note that a small estimator bias (denoted by
the non-zero baseline) is also present for the correct go condi-
tion. Consequently, the direct PLI-square estimator values that
we observed during the movement period (-2000 to -1000 ms)
were higher for the incorrect go condition than for the correct
go condition. This spurious difference disappeared when we
examined the unbiased PLI-square estimator (Figure 12, mid-
dle panels).
(iii) We examined the time-frequency representation of the

direct estimator of the magnitude of the ImC (Figure 14). We
report three differences with the debiasedWPLI-square and un-
biased PLI-square estimators.
First, we observed that the theta-band values of the direct es-

timator of the magnitude of the ImC were in generally much
lower than the respective theta-band values of the debiased
WPLI-square and the unbiased PLI-square estimators (on the
order of 5-10 times smaller, considering that the latter statistics
estimate squared population parameters). Thus, the debiased
WPLI-square estimator and the unbiased PLI-square estimator
indicate a greater strength of theta-band synchronization dur-
ing the correct go waiting period than the direct estimator of
the magnitude of the ImC does, a result that is consistent with
Stam et al. (2007).
Second, in comparison to the debiased WPLI-square estima-

tor and the unbiased PLI-square estimator, the direct magnitude
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of the ImC estimator yielded less contrast between theta-band
values for the correct go and the incorrect go waiting period.
Third, in contrast to the debiasedWPLI-square estimator and

the unbiased PLI-square estimator, the direct estimator for mag-
nitude of the ImC was less precise in rendering the frequency
band that increases spectral power for the correct go waiting
period. These differences are presumably caused by the ImC’s
sensitivity to, firstly, changes in the phase of the coherency, sec-
ondly, the addition of uncorrelated noise sources, and, thirdly,
volume-conducting the correlated sources of interest (i.e., the
OFC populations).

12. Discussion

We introduced the WPLI, a novel measure of phase-
synchronization. Similar to the PLI (Stam et al., 2007), the
WPLI estimates to what extent phase leads and lags between
signals from two sensors are nonequiprobable. In contrast
with the PLI, the WPLI weighs more the contribution of ob-
servations based on the magnitude of the imaginary compo-
nent. WPLI is also tightly related to the ImC, in that they
only differ for the normalization. The main advantage of the
WPLI above ‘volume-conduction sensitive’ indices of phase-
synchronization is that the latter have a problem with statistical
validity, because they intend to index phase-synchronization,
but can be spuriously increased by volume-conduction. In ad-
dition, we argued that, in comparison to the ImC and PLI, the
WPLI has increased sensitivity to detect phase-synchronization
and changes therein. For an overview of all of the discussed
phase-synchronization indices and their properties, see Table 1.
The problem of indexing phase-synchronization can be for-

mulated as a detection problem. Based on the sensor data, a
decision should be made as to whether neuronal sources of
interest are phase-synchronized, and whether they are differ-
entially phase-synchronized depending on experimental condi-
tion. There are two types of errors that can be made when a
decision is taken as to whether the neuronal sources of inter-
est are phase-synchronized or not. (i) Accepting the null hy-
pothesis that there is no phase-synchronization when there is
phase-synchronization at the source level (Type II error for de-
tecting phase-synchronization). (ii) Falsely rejecting this null
hypothesis (Type I error for detecting phase-synchronization).
Similarly, there are two types of errors that can be made
when a decision is taken as to whether there are differences
in phase-synchronization between neuronal sources of interest
as a function of experimental conditions. (i) Falsely accept-
ing the null hypothesis that there are no differences in phase-
synchronization between experimental conditions (Type I error
for detecting differences in phase-synchronization). (ii) Falsely
rejecting this null hypothesis (Type II error for detecting differ-
ences in phase-synchronization). We will interpret our results
in terms of these four statistical errors.

12.1. Comparison of WPLI and PLI
We demonstrated several advantages of the WPLI over the

PLI, which can be formulated in terms of a lower probability of
making Type II errors.

(i) In contrast with the PLI, true phase-synchronization (as
indexed by the coherence) is, in the absence of volume conduc-
tion and noise, and with the phase of the coherency different
from 0◦ or 180◦, always detected by the WPLI, corresponding
to a lower probability of making Type I errors in detecting true
phase-synchronization.
(ii) For a von Mises distribution of the relative phase, adding

uncorrelated noise sources entails a stronger decrease in the
PLI than in the WPLI, corresponding to a lower probabil-
ity (for the WPLI) of making Type II errors in (a) detect-
ing phase-synchronization, and in (b) detecting differences in
phase-synchronization.
(iii) For the von Mises relative phase distribution, and no

noise sources and volume-conduction added, the relationship
between the WPLI and the PLV is steeper around zero PLV val-
ues, than it is the case for PLI. Correspondingly, we showed
that the ratio of the expected debiased WPLI-square estimator
value over the debiased WPLI-square estimator sample vari-
ance (i.e., the standardized mean) is larger than the ratio of the
expected unbiased PLI-square estimator value over the unbi-
ased PLI-square estimator sample variance. This corresponds
to a lower probability, for the WPLI, of making Type II errors
in (a) detecting phase-synchronization, and in (b) detecting dif-
ferences in phase-synchronization.
(iv) When the cross-spectrum between the sources of inter-

est changes such that a complex-valued noise-variable is added
to the cross-spectrum (reflecting a change in strength of phase-
synchronization between their activities), then this can lead to
an increase of the PLI, while the WPLI always decreases, corre-
sponding to, firstly, a lower probability (for the WPLI) of mak-
ing Type II errors in (a) detecting phase-synchronization, and
in (b) detecting differences in phase-synchronization.

12.2. Comparison of PLI and WPLI with ImC
Previously, Stam et al. (2007) compared the PLI with the

ImC, and showed that, for simulations of the Kuramoto model
of coupled oscillators (Kuramoto, 1975), the PLI was less
sensitive to the addition of volume-conducted noise sources,
and performed better at detecting true changes in phase-
synchronization, indicating a lower probability of making both
types of Type II Errors.
The ImC has two important downsides when it comes to

making Type II errors in detecting phase-synchronization, and
Type I and Type II errors in detecting differences in phase-
synchronization. Firstly, as already noted by Stam et al. (2007),
it can be strongly affected by the phase of the coherency, which
can lead to very small ImC values, and a compressed dynamic
range of the ImC when the sources of interest are nearly in
phase (or in phase opposition). Secondly, the WPLI and the
PLI are more noise robust, as they are unchanged unless the
noise is strong enough to change the sign of the imaginary part
of the cross-spectrum. On the other hand, the magnitude of the
ImC is always decreased by adding uncorrelated noise sources.

12.3. Volume-conducting correlated sources of interest
Nolte et al. (2004) and Stam et al. (2007) only modeled the
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effect of volume-conducting uncorrelated sources. Expanding
on that, we analyzed to what extent volume-conducting two cor-
related sources of interest distorts the measurement of their true
signal relationship. The PLI and the WPLI are not affected, and
in the absence of additional noise sources, their true values can
be recovered. In contrast, the magnitude of the ImC can either
increase or decrease, depending on the phase of the coherency.
This is a relevant result for cases where the sources of interest
are spatially close, and where a significant proportion of vol-
ume conduction comes from the interacting sources of interest
themselves.

12.4. Comparison of WPLI with coherence and PLV

The principal limitation of the WPLI (similar to PLI and
ImC) is that it is relatively insensitive to true changes in phase-
synchronizationwhen the phase of the coherency lies very close
to 0 or 180◦. In this phase regime, the coherence and the
phase locking value will be more sensitive to true changes in
phase-synchronization, i.e., have a lower probability of making
Type II errors in detecting phase-synchronization. However,
they have a much higher probability of making Type I errors,
because they can be strongly spuriously increased by volume-
conduction. In other words, the coherence and the PLV pro-
vide a less valid measure of phase-synchronization. It is im-
portant to mention that volume-conduction can also spuriously
decrease the coherence and the PLV (see Figure 4). Thus, it
can occur that the WPLI exceeds zero while the PLV or the
coherence equal zero. For example, this may occur if phase-
synchronization occurs at a phase-delay close to 180◦ (e.g.
Gregoriou et al. (2009)), because the use of a common EEG
reference creates the same problem as adding a noise source
with volume-conduction coefficients that have the same sign,
thus adding a systematic positive real component to the cross-
spectrum.
It is difficult to make general statements about whether the

WPLI has higher or lower probability of making Type I and
Type II errors for detecting changes in phase-synchronization as
a function of experimental conditions. A priori, the K sources
have different degrees of volume-conduction, and variations in
the relative activation of the K sources may cause additional
variations in the coherence and the PLV, masking true changes
in phase-synchronization. Further, both coherence, PLV, and
WPLI can be influenced by the phase of the coherency, which
can lead to both Type I and Type II errors when it comes to
detecting experimental changes in phase-synchronization. Fi-
nally, when the changes in phase-synchronization occur at a
zero phase-delay, WPLI may be relatively insensitive (leading
to Type II errors in detecting changes in true interactions) in
comparison to PLV and coherence.
A second limitation of the ImC, the PLI and theWPLI, which

also holds for the coherence and the PLV, is that true interac-
tions are not always occurring proximal to the recording sensors
of interest. For example, when rodents make whole bodymove-
ments, high amplitude hippocampal theta-band activity and
phase-delayed theta-band synchronization between CA1 and
CA3 activity can be observed. Since CA1 and CA3 have differ-

ent spatial distances to many distant cortical sites (Sirota et al.,
2008), theta-band synchronization between nearby cortical sites
that occurs at a phase delay different from 0 or 180◦ may thus
reflect true, yet distant interactions between CA1 and CA3
(Sirota et al., 2008). This interpretation problem is not solved
by constructing a volume-conduction insensitive measure; it
can only be addressed by using source reconstruction or cur-
rent source density analysis.
For EEG data with a spatially dense, controlled arrangement

of electrode positions, the problem of a common reference
can be addressed by computing local Laplacians (i.e., second
derivatives of raw potentials), also known as current-source-
density analysis. This approach in essence removes the effect
of a common reference (see Nunez and Srinivasan (2006)). In
addition, the local Laplacian can act as a spatial filter with im-
proved spatial resolution. A downside of this approach is that
the Laplacian may be more noise-sensitive than raw potentials,
especially to high spatial frequency noise, and that it empha-
sizes superficial local sources (for scalp EEG: within a few cen-
timeters), whereas the raw EEG potentials are more sensitive to
spatially extended sources (Nunez and Srinivasan, 2006). Fur-
thermore, the Laplacian can not be used for arrays without a
spatially dense, controlled arrangement of electrodes (e.g., the
example data). Thus, raw EEG potentials and Laplacians offer
complementary views on cortical activity.

12.5. Sample-size bias problem

In the second part of our paper, we addressed the problem of
estimator bias. We demonstrated that the direct PLI estimator,
in contrast with the direct signed PLI estimator, is a positively
biased estimator, especially for low values of the PLI.
To solve this ‘bias problem’, we introduced an unbiased es-

timator of the squared PLI, called the unbiased PLI-square es-
timator, using an estimation procedure similar to that described
in Vinck et al. (2010b). We emphasize that the unbiased PLI-
square estimator is simply an unbiased estimator of an existing
index of phase-synchronization, namely the (squared) PLI; it
presents nothing new at the population parameter level.
In addition, we developed a pairwise estimator of the squared

WPLI, called the debiased WPLI-square estimator, which re-
moves the type of bias that is inherent to the PLI. However, we
demonstrated that because the debiased WPLI-square estima-
tor is a weighted statistic, it suffers from an additional source
of bias (‘weighting bias’), which is caused by the weights de-
termining their own weight normalization. We showed that, as
the sample size decreases, the debiased WPLI-square estimator
converges to the unbiased PLI-square estimator value, and as
it increases, its expected value converges to the squared WPLI.
Nevertheless, we believe that this ‘weighting bias’ is relatively
unproblematic, since the expected debiased WPLI-square esti-
mator value converges fairly rapidly to the squared WPLI, be-
cause for large sample sizes, the weights hardly impact their
own normalization (Figure 9).
On the level of inferential statistics, the effect of the bias

of the debiased WPLI-square estimator might be dealt with
by means of randomization statistics (Maris and Oostenveld,
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2007), or by repeatedly drawing an equal number of trials per
experimental condition, similar to the fixed sample size PLV
(Vinck et al., 2010a).

12.6. Application to OFC data
In the third part of our paper, we applied the newly developed

WPLI to LFP recordings from the OFC of rats engaging in a
two-odor discrimination task. Because the LFP sensors were
spatially close (< 1mm, up to < 200µm), we expected that vol-
ume conduction from local OFC sources would pose a problem
for measuring phase-synchronization. In addition, measures of
theta-band synchronizationmay be spuriously increased by vol-
ume conduction of hippocampal activity (Sirota et al., 2008).
We showed that PPC (an estimator of PLV) (Vinck et al.,

2010b) was successful at detecting increased theta frequency
synchronization in certain behavioral conditions, but also sig-
naled increased theta synchronization during the movement
period, likely a result of volume conduction of hippocampal
signals(Sirota et al., 2008). Moreover, PPC yielded an elevated
baseline value (above 0.2) for all time-frequency points.
Of these three observations, only the first point was con-

firmed by the analysis of the WPLI. Theta-band WPLI values
(as estimated by the debiased WPLI-square estimator) between
LFPs were much higher during the waiting (for sucrose) pe-
riod than during the incorrect go waiting (for quinine) period
and the movement period. The increase in theta PPC values
during the movement period was not confirmed by the WPLI
analysis, supporting the volume conduction interpretation. The
indiscriminate increase in PPC values above 0.2 (not seen in the
WPLI) for all time-frequency combinations might be explained
by the use of a common reference, common noise, and volume
conduction within the OFC.
Thus, the analysis methodologies we developed here may be

helpful to detect systematic phase leads and lags correspond-
ing to synaptic delays within the local circuit, and communica-
tion between different parts of a brain structure. This has im-
portant consequences for the analysis of relationship between
brain activity and behavior, in the studied example about differ-
ent brain dynamical regimes induced by reward or lack thereof.
In particular, our current results reinforce our previous conclu-
sion that OFC theta-band oscillations during reward anticipa-
tion (but not movement) (van Wingerden et al., 2010b) are lo-
cally generated, i.e., do not arise because of volume conduction
of distant sources.
The measures and estimation procedures described in this

paper are made available in the open source FieldTrip toolbox
(http://www.ru.nl/neuroimaging/fieldtrip).
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Figure 1: Illustration of the WPLI and the PLI. (A) Cross-spectra without noise. (B) Cross-spectra with noise, causing one of the cross-spectra to rotate across the
real axis. (C) PLI weights all cross-spectra equally, and assigns a value of +1 (blue; phase lead) or -1 (red; phase lag) depending on which side of the real axis a
cross-spectrum lies. (D) WPLI weights cross-spectra according to the magnitude of the imaginary component of the cross-spectrum. Cross-spectra around the real
axis contribute to a lesser extent than cross-spectra around the imaginary axis.
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Figure 2: Influence of noise on the PLI and the WPLI for a von Mises distribution. (A) The squared PLI, Ψ2, as a function of the noise amplitude σ. (B)
Correspondence of line width and line color with µ and the PLV values, respectively. (C) Same as in (A), but now for the squared WPLI, Φ2. (D) Same as in (A),
but now shown the ratio Φ2/Ψ2. Values > 1 indicate larger squared WPLI values.
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Figure 3: Dependence of the PLI and the WPLI on the addition of uncorrelated
noise sources, for a bimodal distribution of the relative phase. X-axis: values
of noise amplitude σ. Y-axis: population parameter after addition of noise.
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Figure 4: Relationship between the circular mean phase and the PLV. (A) The
PLV, after addition of a real-valued ‘self-interaction’ volume-conduction term
(V = 1

2 ), as a function of true mean phase of the underlying von Mises distri-
bution. Open squared indicate PLV values without addition of ‘self-interaction’
term. Green-to-black color-scaling indicates increasing values of the PLV. (B)
Same as in (A), but now with real-valued ‘self-interaction’ term V = 1.
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Figure 5: Relationship of the squared WPLI and the squared PLI on the one
hand to the squared PLV on the other hand, for a von Mises distribution. (A)
X-axis: the squared PLV. Solid lines: the squared WPLI. Dashed lines: the
squared PLI. Green-to-black color scaling indicates increasing values of µ ∈
{0, π/40, . . . , π/2}. (B) Same as (A), but shown the quotient of the squared
WPLI over the squared PLI, i.e., Φ2/Ψ2. Values > 1 indicate a larger squared
WPLI.
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Figure 6: Bias of the direct PLI estimator, for a von Mises distribution. The
expected value of the direct PLI estimator for a different number of obser-
vations. Lines from bottom to top represent increasing values of the PLV
({0, 4/10, 7/10, 1}).
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Figure 7: Illustration of the ImC, the PLI and the unbiased PLI-square estima-
tor. (A) Each line originating from the center of the circle represents a cross-
spectrum, with the magnitude fixed. The coherency and its projection on the
imaginary axis (ImC) are shown as black arrows. Vertical lines originating
from the endpoints of the cross-spectra represent their corresponding imagi-
nary components. (B) Same as in (A), but the vertical lines originating from
the endpoints of the cross-spectra now represent the signs of their correspond-
ing imaginary components. The PLI is defined as the magnitude of the expected
sign value, and depicted as a black arrow. (C) Unbiased PLI-square estimator
is defined as the average of all pairwise products of signs. Pairs with identical
observations are excluded (diagonal). Red squares indicate equal signs, blue
squares indicate unequal signs. Order of 1’s and -1’s is irrelevant.
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Figure 8: Graphical explanation of debiased WPLI-square estimator. Top: The
debiased WPLI-square estimator‘s numerator is defined as the sum of all pair-
wise products of imaginary components, that correspond to the imaginary com-
ponents in Figure 7. Bottom: The denominator of the debiased WPLI-square
estimator is defined as the sum of all pairwise products of the magnitudes of the
imaginary components.
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Figure 9: Bias of the debiased WPLI-square estimator and the unbiased PLI-
square estimator. (A) Expected value of debiased WPLI-square estimator (dot-
ted lines) and unbiased PLI-square estimator (solid lines) as a function of
sample size N. Samples were drawn 106 times from a von Mises distribu-
tion with µ = π/16. Lines from bottom to top correspond to values of PLV
{2/10, 5/10, 7/10, 9/10}. (B) Same as in (A), but now for µ = π/8.
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Figure 10: Quotient of sample mean over sample standard deviation compared between unbiased PLI-square estimator and debiased WPLI-square estimator. (A)
10 log transformed quotient of sample mean over sample standard deviation (standardized mean) as function of N for debiased WPLI-square estimator (dotted)
and unbiased PLI-square estimator (solid). Phases were von Mises distributed with µ = π/8. Green-to-purple color-scaling indicates increasing values of PLV
{0.1, 0.2 . . . , 0.9}. (B) Same as in (B), but now µ = π/4. (C) 10 log transformed quotient of debiased WPLI-square estimator standardized mean over unbiased
PLI-square estimator standardized mean, for µ = π/8. Values > 1 indicate larger standardized mean for debiased WPLI-square estimator. (D) Same as in (C), but
now µ = π/4.
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Figure 11: PPC compared between correct go and incorrect go condition. (A)
Average PPC as a function of time and frequency during the correct go move-
ment and waiting (for sucrose) period. (B) Same as (A), but now during the
incorrect go movement waiting (for quinine) period. (C) Average PPC as a
function of time and frequency, separate for the correct go movement period.
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Figure 12: Comparison of debiased WPLI-square estimator, unbiased PLI-square estimator, and direct PLI-square between correct go and incorrect go conditions.
All figures have same color scaling to enhance comparability. (A) Average debiased WPLI-square estimator as function of time and frequency during the correct go
waiting (for sucrose) period. (B) Average debiased WPLI-square estimator as function of time and frequency during the incorrect go waiting (for quinine) period.
(C) Average unbiased PLI-square estimator as function of time and frequency during the correct go waiting (for sucrose) period. (D) Average unbiased PLI-square
estimator as function of time and frequency during the incorrect go waiting (for quinine) period. (E) Average direct PLI-square as a function of time and frequency
during the correct go waiting (for sucrose) period. (F) Average direct PLI-square as a function of time and frequency during the incorrect go waiting (for quinine)
period. Notice the non-zero baseline value in comparison to (D)
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Figure 13: Comparison of z-scored debiased WPLI-square estimator and z-scored unbiased PLI-square estimator. All figures have same color scaling to enhance
comparability. (A) Average z-score standardized debiased WPLI-square estimator as function of time and frequency during the correct go waiting (for sucrose)
period. (B) Average z-score standardized debiased WPLI-square estimator as function of time and frequency during the incorrect go waiting (for quinine) period.
(C) Average z-score standardized unbiased PLI-square estimator as function of time and frequency during the correct go waiting (for sucrose) period. (D) Average
z-score standardized unbiased PLI-square estimator as function of time and frequency during the incorrect go waiting (for quinine) period.
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Figure 14: Direct magnitude of the ImC estimator compared between correct go
and incorrect go condition. (A) Average direct magnitude of the ImC estimator
as a function of time and frequency during the correct go waiting (for sucrose)
period. (B) Same as (A), but now during the incorrect go waiting (for quinine)
period.
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Coherence and PLV ImC (Nolte et al.,
2004)

PLI (Stam et al.,
2007)

WPLI

Construction index
(Section 3 and 4).

Uses imaginary and
real part equally.

Expected value of
imaginary component
cross-spectrum, nor-
malized by expected
value of signals’
power.

Consistency of sign of
imaginary component
cross-spectrum.

Expected value of
imaginary compo-
nent cross-spectrum,
normalization by
expected value of
magnitude imag-
inary component
cross-spectrum.

Effect of volume-
conduction correlated
sources of interest
(Section 5).

Strong increase or
decrease, depend-
ing on phase of
coherency and sign
volume-conduction
coefficients.

Increase or de-
crease, depending on
phase coherency and
volume-conduction
coefficients.

Unaffected. Unaffected.

Effect of adding
volume-conducted,
uncorrelated noise
sources (Section 6).

Strong increase
or decrease, de-
pending on phase
of coherency and
volume-conduction
coefficients.

Always decreases, be-
cause signal ampli-
tudes always increase.

Depending on distri-
bution relative phase,
increase (e.g., for
some bimodal or
asymmetric distri-
butions) or decrease
(e.g. for symmetric,
unimodal distribu-
tions).

Decrease, insofar
sign of imaginary
component cross-
spectrum changes.
Less noise-sensitive
than PLI.

Effect of change in
phase of coherency
between sources of
interest (Section 7.1).

Decrease or in-
crease, depending on
volume-conduction
coefficients.

Strong increase or de-
crease possible, range
of statistic depends
on phase coherency
(see also Stam et al.
(2007)).

Range statistic is al-
ways [0,1], PLI only
changes if distribu-
tion of sign imaginary
component of cross-
spectrum is affected.

Range statistic is
always [0,1], WPLI
only changes if
distribution of sign
imaginary component
of cross-spectrum is
affected.

Detecting phase-
synchronization.

Strong tendency to
generate false posi-
tives, false positives
rate cannot be con-
trolled.

Reduced sensitivity
in detection vs. PLI.
(Stam et al., 2007).
False positives rate
controlled.

Even without added
noise, PLI may fail
to detect phase-
synchronization for
bimodal/asymmetric
relative phase distri-
butions. However,
false positives rate
controlled.

Even without added
noise: Steeper re-
lationship with true
phase-consistency
(e.g., as measured by
PLV) than PLI, al-
ways detects non-zero
coherence, WPLI
estimator has higher
z-score than PLI
estimator.

Table 1: Summary of performance and behavior of different phase-
synchronization indices.
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Negative bias of the coherency

Since the coherence is a weighted statistic, in the sense

that it weights exp(iΘ) by the amplitude R, it can also be

negatively biased for some ranges of the sample size. This

type of ‘weighting bias’ is, in the context of the WPLI’s

bias, discussed in detail. In short, the negative bias can arise

because the weights in the coherence’s numerator, i.e., M1 jM2 j,

determine their own weight normalization, i.e., the coherence’s

denominator. The weight normalization is, on expectation,

overestimated for large observed values of M1 j and M2 j. If

the coherence exceeds the PLV, then the coherence can be

negatively biased for some intervals of the sample size N.

Example. Suppose that, for any A ≥ 0, Pr{Θ = 1

2
π,R = A} = 1

2
,

and Pr{Θ = 1

2
π,R = 1} = − 1

2
. If A � 1, then the coherence

exceeds the PLV. Supplementary Figure 1 shows that, for this

distribution, the direct coherence estimator can approach the

coherence from below. Since for this distribution,�{C} = 0, it

follows that the direct ImC’s magnitude estimator approaches

the ImC’s magnitude from below as well.

Variance and consistency of the unbiased PLI-square estimator

Having examined the first central moment of the unbiased

PLI-square estimator, we will now examine its second central

moment. The 2-combinations over which it is defined are not

statistically independent. This does not affect the expected un-

biased PLI-square estimator value, but it does affects its vari-

ance, which is given by the equality Var

�
Ω̂
�
= E{Ω̂2} − Ω2

.

The first term on the right-hand side of this equation can be

expanded as

E{Ω̂2} = E

��
N
2

�−2� N�

j=1

�

k= j+1

d(Xj, Xk)

�2�
. (1)

We can decompose E{Ω̂2} in three terms: The product of

the ‘’sign agreement’ d for 2-combinations that are identical,

the product of the ’sign agreement’ for 2-combinations that

are independent and the product for 2-combinations in which

there is one shared observation, such that the total number of

2-combinations of 2-combinations (for N > 2) equals

�
N
2

�
+

�
N
2

�
(N − 2)(N − 3)

2
+

�
N
2

�
(2N − 4) , (2)

which equals

�
N
2

�2
. By expanding (1), the variance of the unbi-

ased PLI-square estimator equals

Var{Ω̂} = 2

N(N − 1)
E{d(X(1), X(2)

)
2} (3)

+
6 − 4N

N(N − 1)
Ω2 +

4N − 8

N(N − 1)
E{d(X(1), X(2)

) d(X(1), X(3)
)},

where X(3)
is a random variable identically distributed to and

independent from X. It follows from (3) that the variance of

the iPPC approaches zero asymptotically, i.e., as N → ∞,

Var

�
Ω̂
�
→ 0, and hence Ω̂ → ∞. In other words, Ω̂ is a

consistent and unbiased estimator of Ω.

Comparison of mean squared error between direct squared
PLI and unbiased PLI-square estimator

Removing the bias from a statistical estimator may lead to

an increase in the estimator’s variance. An estimator’s mean
squared error (MSE), which is defined as the sum of the bias

and the variance, captures both quantities at once. We directly

compared the MSE of the unbiased PLI-square estimator to the

MSE of the direct PLI-square by generating 10
6

samples from

a discrete Bernoulli probability distribution, defined by the

probabilities q ≡ Pr{�{X} > 0} and 1 − q = Pr{�{X} < 0}, with

q ∈ {0, 1/60, . . . , 1/2}. For values of q close to
1

2
, the MSE of

the unbiased PLI-square estimator compares favorably to the

MSE of the direct PLI-square for a wide range of sample sizes

(N > 10 − 20), while it is only slightly larger for small values

of q. For very small sample sizes, especially N < 5, the MSE

of the direct PLI-square compares favorably to the MSE of

the unbiased PLI-square estimator (Supplementary Figure 2),

for both small and large PLI. Thus, whether the MSE of the

unbiased PLI-square estimator compares favorably to the MSE

of the direct PLI-square depends on N and the PLI.
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Figure 1: Expected value of coherence estimator Ĉ as a function of sample size

N. Cross-spectra X = R exp(iΘ) were distributed according to Pr{Θ = 1

2
π,R =

A} = 1

2
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2
. Each line corresponds to a different
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Figure 2: The
10

log transformed quotient of the MSE of the unbiased PLI-

square estimator, over the MSE of the direct PLI-square, i.e.,
10

log(E{(Ω̂ −
Ω)

2}/E{(Ψ̂2 − Ψ2
)
2}. Increasing values of the PLI ({0, 1/30, . . . , 1}) are indi-

cated by green-to-black color scaling. Values of zero indicate to equal MSE.

Values > 0 indicate larger MSE for the unbiased PLI-square estimator. Inset:

MSE quotient for larger samples.
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